scholarly journals Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4245
Author(s):  
Daniel J. Verdon ◽  
Misty R. Jenkins

In recent decades, adoptive cell transfer and checkpoint blockade therapies have revolutionized immunotherapeutic approaches to cancer treatment. Advances in whole exome/genome sequencing and bioinformatic detection of tumour-specific genetic variations and the amino acid sequence alterations they induce have revealed that T cell mediated anti-tumour immunity is substantially directed at mutated peptide sequences, and the identification and therapeutic targeting of patient-specific mutated peptide antigens now represents an exciting and rapidly progressing frontier of personalized medicine in the treatment of cancer. This review outlines the historical identification and validation of mutated peptide neoantigens as a target of the immune system, and the technical development of bioinformatic and experimental strategies for detecting, confirming and prioritizing both patient-specific or “private” and frequently occurring, shared “public” neoantigenic targets. Further, we examine the range of therapeutic modalities that have demonstrated preclinical and clinical anti-tumour efficacy through specifically targeting neoantigens, including adoptive T cell transfer, checkpoint blockade and neoantigen vaccination.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1536-1536 ◽  
Author(s):  
Michael P. Chu ◽  
Joshua Brody ◽  
Holbrook E Kohrt ◽  
Matthew J. Frank ◽  
Michael Khodadoust ◽  
...  

Abstract Introduction MCL has a poor prognosis. In eligible patients, intensifying frontline, CHOP-like regimens (e.g., cytarabine) as well as high-dose chemotherapy and autologous stem cell transplant (HDT/ASCT) consolidation in first remission have improved progression free survival (PFS) but less so, overall (OS). Preclinical animal models show benefits of adding tumor-specific T-cells to ASCT. CpG (PF-3512676) is a toll-like receptor 9 (TLR9) agonist and an effective vaccine adjuvant that induces costimulatory molecule expression on both antigen-presenting and MCL cells. This phase I/II clinical trial (NCT00490529) adds autologous T-cell transfer, harvested from patients after vaccination with CpG-activated autologous MCL cells - a maneuver termed immunotransplant. This is a planned interim analysis for safety and efficacy triggered by the first 20 patients reaching 1 year post ASCT. Methods Prior to therapy, subjects' tumor cells are collected by biopsy or apheresis and patient-specific vaccine is created by incubating fresh tumor cells with CpG (3 mcg/mL PF-3512676, 72-hr culture), then irradiated and cryopreserved. Patients receive induction chemoimmunotherapy of physician's choice. Patients achieving at least partial response (PR) then receive 3 subcutaneous autologous tumor vaccinations (1 x 108 cells/dose) mixed with CpG (18 mg) every 4-7 days. Primed T-cells (≥ 1 x 1010 CD3 cells) were collected by apheresis 2-4 weeks following vaccine 3 and a rituximab (375 mg/m2) B-cell purge. After standard HDT/ASCT (conditioning = BCNU, cyclophosphamide, etoposide), primed T-cells and a 4th vaccination are given on day+1. A 5th CpG-MCL vaccination followed 3 months post ASCT. The primary endpoint of this study is freedom from minimal residual disease (MRD) at 1 year post ASCT, measured by presence of patient-specific, malignant B-cell VDJ sequence in peripheral blood (ClonoSeq™, analyzed at a sensitivity of ≥ 1 clone/10,000 leukocytes) -an endpoint previously shown to be highly prognostic. Secondary endpoints include PFS, OS, and immune response to vaccine. 59, transplant-eligible, MCL patients are targeted for accrual in this 2-stage design. Results In this interim analysis of 24 patients accrued, 20 have surpassed 1 year post ASCT. All patients had Stage IV disease. Median values included (range): follow-up 43.5 months (11.5-60.1), age 60 years (47-70), and MIPI score 5.9 (5.1-7.8). Vaccine was made from biopsy alone (n=12), apheresis alone (n=9), or both (n=1). Frontline therapy included R-CHOP (n=7), R-hyperCVAD (n=14), alternating R-CHOP/R-DHAP (n=2), and R-EPOCH (n=1). 19 patients achieved complete response while another 3 had PR. All responding patients were vaccinated, able to yield sufficient T-cells for adoptive transfer, and proceeded through standard HDT/ASCT. At 1-year post ASCT, freedom from MRD was 90.5% (n=21). 2 patients did not reach 1-year post ASCT. One died from an ASCT complication (metapneumovirus) while the other relapsed 6 months following ASCT (included in MRD analysis). The most common toxicity due to CpG-MCL vaccine was erythematous rash at injection site (90.9%, n=20, each grade 1). No serious adverse events were seen related to vaccines or adoptive T-cell transfer. All patients had successful hematopoietic recovery, but two were delayed and received backup stem cell infusions with eventual recovery. Though median PFS and OS have not been reached, 3-year PFS and OS at interim analysis are 54.5% and 63.6%, respectively (intention to treat). In this data set, higher expression of co-stimulatory molecules (such as CD40, CD80, and CD86) on a subject's MCL in response to CpG was associated with freedom from MRD (p =0.02). Post-ASCT, higher peripheral T-cell granzyme and perforin response to ex vivo re-challenge with autologous MCL cells was also associated with freedom from MRD (p =0.01). Conclusions The addition of CpG-activated, whole MCL vaccination and autologous, adoptive T-cell transfer to standard therapy appears both feasible and safe. At interim analysis, the 1-year freedom from MRD surpasses rates previously reported in other studies and warrants further investigation. To date, 46 patients have either completed and/or are continuing to undergo study treatment and the study remains open to accrual for patients newly diagnosed with MCL. Disclosures Miklos: Pharmacyclics: Research Funding. Rezvani:Pharmacyclics: Research Funding. Faham:Adaptive Biotechnologies: Employment. Levy:Immune Design: Research Funding; Dynavax: Research Funding.


2016 ◽  
Author(s):  
Netonia Marshall ◽  
Thomas Marron ◽  
Judith Agudo ◽  
Brian Brown ◽  
Joshua Brody

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Liat Hershkovitz ◽  
Jacob Schachter ◽  
Avraham J. Treves ◽  
Michal J. Besser

Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on theex vivoexpansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.


2021 ◽  
Vol 160 (6) ◽  
pp. S-325-S-326
Author(s):  
Ahmed Elfiky ◽  
Ishtu Hageman ◽  
Patricia Van Hamersveld ◽  
Olaf Welting ◽  
Jan Verhoeff ◽  
...  

2007 ◽  
Vol 13 (2) ◽  
pp. 29
Author(s):  
R.J. Orentas ◽  
W. Jing ◽  
X. Yan ◽  
B.D. Johnson
Keyword(s):  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document