scholarly journals Optimizing MgO Content for Boosting g-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1233
Author(s):  
Abdulaziz Bagabas ◽  
Ahmed Sadeq Al-Fatesh ◽  
Samsudeen Olajide Kasim ◽  
Rasheed Arasheed ◽  
Ahmed Aidid Ibrahim ◽  
...  

The dry reforming of methane (DRM) process has attracted research interest because of its ability to mitigate the detrimental impacts of greenhouse gases such as methane (CH4) and carbon dioxide (CO2) and produce alcohols and clean fuel. In view of this importance of DRM, we disclosed the efficiency of a new nickel-based catalyst, which was promoted with magnesia (MgO) and supported over gamma-alumina (g-Al2O3) doped with silica (SiO2), toward DRM. The synthesized catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM) techniques. The effect of MgO weight percent loading (0.0, 1.0, 2.0, and 3.0 wt. %) was examined because the catalytic performance was found to be a function of this parameter. An optimum loading of 2.0 wt. % of MgO was obtained, where the conversion of CH4 and CO2 at 800 °C were 86% and 91%, respectively, while the syngas (H2/CO) ratios relied on temperature and were in the range of 0.85 to 0.95. The TGA measurement of the best catalyst, which was operated over a 15-hour reaction time, displayed negligible weight loss (<9.0 wt. %) due to carbon deposition, indicating the good resistance of our catalyst system to the deposition of carbon owing to the dopant and the modifier. TEM images showed the presence of multiwalled carbon nanotubes, confirming the TGA.

2020 ◽  
Vol 92 (4) ◽  
pp. 545-556
Author(s):  
Maslin Chotirach ◽  
Supawan Tantayanon ◽  
Duangamol Nuntasri Tungasmita ◽  
Junliang Sun ◽  
Sukkaneste Tungasmita

AbstractA novel approach of titanium nitride (TiN) incorporated into SBA-15 framework was developed using one-step hydrothermal synthesis method. TiN contents up to ~18 wt% were directly dispersed in a synthetic gel under a typical strong acidic condition. The physico-chemical characteristics and the surface properties were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS), wavelength dispersive X-ray fluorescence (WDXRF) and CO2-temperature programmed desorption (CO2-TPD). The results indicated that the highly ordered mesostructured was effectively maintained with high specific surface area of 532–685 m2g−1. The basicity of the modified SBA-15 increased with rising TiN loading. These modified materials were applied as a support of Ni catalyst in dry reforming of methane (DRM). Their catalytic behavior possessed superior conversions for both CO2 and CH4 with the highest H2/CO ratio (0.83) as well as 50 % lower carbon formation, compared to bare SBA-15 support.


2012 ◽  
Vol 113-114 ◽  
pp. 19-30 ◽  
Author(s):  
Sergey Sokolov ◽  
Evgenii V. Kondratenko ◽  
Marga-Martina Pohl ◽  
Axel Barkschat ◽  
Uwe Rodemerck

2013 ◽  
Vol 394 ◽  
pp. 270-273 ◽  
Author(s):  
Wei Tao ◽  
Hong Wei Cheng ◽  
Qiu Hua Zhu ◽  
Xiong Gang Lu ◽  
Wei Zhong Ding

The CO2 reforming of coke oven gas (COG) for hydrogen production was investigated over mesoporous NiO/La2O3-ZrO2 catalysts. At optimized reaction conditions, the conversions of CH4 and CO2 more than 93%, while a H2 selectivity of 94.7% and a CO selectivity of 98.6% have been achieved at 800 °C. The effect of reaction temperature on the catalytic performance was investigated in detail. The catalysts with appropriate La2O3 content showed better catalytic activity and resistance to coking, which will be promising catalysts in the catalytic dry reforming of COG.


RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 72942-72951 ◽  
Author(s):  
Weizuo Li ◽  
Zhongkui Zhao

This work presents a facile approach for preparing nanosheet-accumulating Laminaria japonica-like hierarchically structured ZrO2 with tetragonal phase, which acts as excellent support for robust supported Ni catalyst towards dry reforming of methane.


Author(s):  
Jyoti Khatri ◽  
Anis Hamza Fakeeha ◽  
Samsudeen Olajide Kasim ◽  
Mahmud S. Lanre ◽  
Ahmed E. Abasaeed ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


Sign in / Sign up

Export Citation Format

Share Document