scholarly journals Mapping the Effects of Potassium on Fuel Conversion in Industrial-Scale Fluidized Bed Gasifiers and Combustors

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1380
Author(s):  
Teresa Berdugo Vilches ◽  
Jelena Maric ◽  
Henrik Thunman ◽  
Martin Seemann

Potassium (K) is a notorious villain among the ash components found in the biomass, being the cause of bed agglomeration and contributing to fouling and corrosion. At the same time, K is known to have catalytic properties towards fuel conversion in combustion and gasification environments. Olivine (MgFe silicate) used as gasifier bed material has a higher propensity to form catalytically active K species than traditional silica sand beds, which tend to react with K to form stable and inactive silicates. In a dual fluidized bed (DFB) gasifier, many of those catalytic effects are expected to be relevant, given that the bed material becomes naturally enriched with ash elements from the fuel. However, a comprehensive overview of how enrichment of the bed with alkali affects fuel conversion in both parts of the DFB system is lacking. In this work, the effects of ash-enriched olivine on fuel conversion in the gasification and combustion parts of the process are mapped. The work is based on a dedicated experimental campaign in a Chalmers DFB gasifier, wherein enrichment of the bed material with K is promoted by the addition of a reaction partner, i.e., sulfur, which ensures K retention in the bed in forms other than inactive silicates. The choice of sulfur is based on its affinity for K under combustion conditions. The addition of sulfur proved to be an efficient strategy for capturing catalytic K in olivine particles. In the gasification part, K-loaded olivine enhanced the char gasification rate, decreased the tar concentration, and promoted the WGS equilibrium. In the combustion part, K prevented full oxidation of CO, which could be mitigated by the addition of sulfur to the cyclone outlet.

Author(s):  
Anna Magdalena Mauerhofer ◽  
Florian Benedik ◽  
Johannes Christian Schmid ◽  
Hermann Hofbauer

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Selina Hafner ◽  
Max Schmid ◽  
Günter Scheffknecht

Finding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.


2020 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Viktor Stenberg ◽  
Magnus Rydén ◽  
Tobias Mattisson ◽  
Anders Lyngfelt

Oxygen carrier aided combustion (OCAC) is utilized to promote the combustion of relatively stable fuels already in the dense bed of bubbling fluidized beds by adding a new mechanism of fuel conversion, i.e., direct gas–solid reaction between the metal oxide and the fuel. Methane and a fuel gas mixture (PSA off-gas) consisting of H2, CH4 and CO were used as fuel. Two oxygen carrier bed materials—ilmenite and synthetic particles of calcium manganate—were investigated and compared to silica sand, an in this context inert bed material. The results with methane show that the fuel conversion is significantly higher inside the bed when using oxygen carrier particles, where the calcium manganate material displayed the highest conversion. In total, 99.3–99.7% of the methane was converted at 900 °C with ilmenite and calcium manganate as a bed material at the measurement point 9 cm above the distribution plate, whereas the bed with sand resulted in a gas conversion of 86.7%. Operation with PSA off-gas as fuel showed an overall high gas conversion at moderate temperatures (600–750 °C) and only minor differences were observed for the different bed materials. NO emissions were generally low, apart from the cases where a significant part of the fuel conversion took place above the bed, essentially causing flame combustion. The NO concentration was low in the bed with both fuels and especially low with PSA off-gas as fuel. No more than 11 ppm was detected at any height in the reactor, with any of the bed materials, in the bed temperature range of 700–750 °C.


2012 ◽  
Vol 600 ◽  
pp. 261-264
Author(s):  
Teng Ge Mi ◽  
Ying Zhao ◽  
Chang Qing Dong ◽  
Wei Liang Cheng

In this paper, a dual fluidized bed has been established. The effect of bed material build-up height and gas velocity on the solid circulation rate of CFB (circulating fluidized bed) and BFB (bubble fluidized bed) has been studied. The results show that the solid circulation rate is increased with the increasing of gas velocity Uc and the bed material build-up height. Bed material build-up height of BFB and CFB is changed with the changing of gas velocity Uc. The bed material heights of CFB and BFB have been also investigated in this experiment.


2018 ◽  
Vol 97 (5) ◽  
pp. 97-104
Author(s):  
Takuya ITO ◽  
Chihiro OHASHI ◽  
Takashi HAYASHI ◽  
Sympei MURAYAMA ◽  
Toshiyuki IWASAKI ◽  
...  

2020 ◽  
Vol 34 (7) ◽  
pp. 8340-8352
Author(s):  
Robin Faust ◽  
Teresa Berdugo Vilches ◽  
Per Malmberg ◽  
Martin Seemann ◽  
Pavleta Knutsson

2009 ◽  
Vol 32 (3) ◽  
pp. 348-354 ◽  
Author(s):  
G. Soukup ◽  
C. Pfeifer ◽  
A. Kreuzeder ◽  
H. Hofbauer

Author(s):  
Ehsan Ghiasi ◽  
Alejandro Montes ◽  
Fatemeh Ferdosian ◽  
Honghi Tran ◽  
Chunbao (Charles) Xu

Abstract The agglomeration of bed material is one of the most serious problems in combustion of biomass in fluidized-bed boilers, due to the presence of some inorganic alkali elements such as K and Na in the biomass ash, which form low-melting-point alkali compounds during the process. In this study, agglomeration behaviors of bed materials (silica sand particles) were investigated in a bench-scale bubbling fluidized-bed reactor operating at 800 °C using simulated biomass ash components: KCl, K2SO4, and a mixture of KCl and K2SO4 at eutectic composition (molar ratio K2SO4/(KCl+ K2SO4)=0.26). The signals of temperature and differential pressure across the bed were monitored while heating up the fluidized bed of silica sand particles premixed with various amounts of KCl, and the KCl-K2SO4 mixture in bubbling bed regime. A sharp decrease in temperature and differential pressure was observed around 750 °C and 690 °C for 0.4–0.6 wt% loading of the low melting-point KCl and KCl-K2SO4 mixture, respectively, suggesting the formation of bed material agglomeration and even de-fluidization of the bed. Moreover, this work demonstrated the effectiveness of kaolin and aluminum sulfate to minimize agglomeration. The results indicated that these additives could successfully prevent the formation of agglomerates by forming compounds with high melting points.


Sign in / Sign up

Export Citation Format

Share Document