scholarly journals New Insight into the Interplay of Method of Deposition, Chemical State of Pd, Oxygen Storage Capability and Catalytic Activity of Pd-Containing Perovskite Catalysts for Combustion of Methane

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1399
Author(s):  
Silva Stanchovska ◽  
Georgy Ivanov ◽  
Sonya Harizanova ◽  
Krasimir Tenchev ◽  
Ekaterina Zhecheva ◽  
...  

Elaboration of Pd-supported catalysts for catalytic combustion is, nowadays, considered as an imperative task to reduce the emissions of methane. This study provides new insight into the method of deposition, chemical state of Pd and oxygen storage capability of transition metal ions and their effects on the catalytic reactivity of supported catalysts for the combustion of methane. The catalyst with nominal composition La(Co0.8Ni0.1Fe0.1)0.85Pd0.15O3 was supported on SiO2-modified/γ-alumina using two synthetic procedures: (i) aerosol assisted chemical vapor deposition (U-AACVD) and (ii) wet impregnation (Imp). A comparative analysis shows that a higher catalytic activity is established for supported catalyst obtained by wet impregnation, where the PdO-like phase is well dispersed and the transition metal ions display a high oxygen storage capability. The reaction pathway over both catalysts proceeds most probably through Mars–van Krevelen mechanism. The supported catalysts are thermally stable when they are aged at 505 °C for 120 h in air containing 1.2 vol.% water vapor. Furthermore, the experimentally obtained data on La(Co0.8Ni0.1Fe0.1)0.85Pd0.15O3—based catalyst, supported on monolithic substrate VDM®Aluchrom Y Hf are simulated by using a two-dimensional heterogeneous model for monolithic reactor in order to predict the performance of an industrial catalytic reactor for abatement of methane emissions.

1981 ◽  
Vol 46 (10) ◽  
pp. 2354-2363 ◽  
Author(s):  
Svatomír Kmošták ◽  
Karel Setínek

The catalytic activity of sulphonated macroporous styrene-divinylbenzene copolymers, the exchange capacity of which was neutralized from 30, 50 and 80% by Fe(III) ions and from 30% by Na ions and that of Wofatit Y-37 ion exchanger neutralized from 10% of its total exchange capacity by several transition metal ions and by sodium has been studied in isomerisation of cyclohexene and dehydration of 1-propanol in the gas phase at 130 °C. It was demonstrated that in both reactions transition metal ions exhibit additional effect to the expected neutralization of the polymer acid groups. In the case of cyclohexene isomerization, this effect depends on the degree of crosslinking of polymer mass of the catalyst. Such dependence has not been, however, observed in dehydration of 1-propanol. The type of transition metal ions did not exhibit any significant effect on the catalytic activity of the polymer catalysts studied.


2013 ◽  
Vol 45 (11) ◽  
pp. 721-733 ◽  
Author(s):  
F. Aneesa ◽  
K. C. Rajanna ◽  
M. Venkateswarlu ◽  
K. Rajendar Reddy ◽  
Y. Arun Kumar

2021 ◽  
Author(s):  
Anees AHMAD Ansari ◽  
Manawwer Alam

Abstract Chemically synthesized cobalt-doped cerium oxide nanoparticles(CeO2:Co;NPs) were successfully prepared by complexed based co-precipitation process. The structural, morphological, chemical composition, optical properties, and electro-catalytic properties were determined by X-ray diffraction pattern(XRD), transmission electron microscopy(TEM), energy dispersive x-ray analysis (EDX), UV/Visible absorption spectroscopy, and cyclic voltammetry techniques. Owing to the wide-spread applications of CeO2 NPs in various fields of applied material sciences, transition metal ions doped CeO2:Co NPs exhibited excellent electro-catalytic properties. Outstanding physiochemical properties of CeO2 such as reversible oxidation states, high ionic mobility, large oxygen storage ability, effective large specific surface area, and the excellent current response observed in the electrocatalytic oxidation of hydrazine. The presence of transition metal ions (cobalt) improves the oxidation potential of hydrazine. Cyclic voltammetry was analog with the electrochemical impedance spectroscopy results, which revealed the enhanced with rapid sensing response against hydrazine. The electro-catalytic results of the CeO2:Co NPs electrode exhibited excellent voltammetry and impedance spectroscopy performance towards the hydrazine oxidation. The fabricated chemical sensor shows a wide linear detection range from 7.18 to 1000 µM, a low detection limit 7.2 µM, and sensitivity of 2.42 µAmLµM-1cm-2. The fabricated sensing electrode demonstrated long-term steadiness resulting it shows high sensitivity, selectivity, repeatability/reproducibility, and rapid detection of hydrazine.


RSC Advances ◽  
2014 ◽  
Vol 4 (56) ◽  
pp. 29702-29714 ◽  
Author(s):  
Yan Li ◽  
Yiming Jia ◽  
Zhenwen Wang ◽  
Xianghui Li ◽  
Wen Feng ◽  
...  

Disruption of intramolecular H-bonding via N-substitution leads to rotational isomerization and much improvement in extraction of Hg2+.


Sign in / Sign up

Export Citation Format

Share Document