scholarly journals Recent Advances in MnOx/CeO2-Based Ternary Composites for Selective Catalytic Reduction of NOx by NH3: A Review

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1519
Author(s):  
Hao Sun ◽  
Soo-Jin Park

Recently, manganese oxides (MnOx)/cerium(IV) oxide (CeO2) composites have attracted widespread attention for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonia (NH3), which exhibit outstanding catalytic performance owing to unique features, such as a large oxygen storage capacity, excellent low-temperature activity, and strong mechanical strength. The intimate contact between the components can effectively accelerate the charge transfer to enhance the electron–hole separation efficiency. Nevertheless, MnOx/CeO2 still reveals some deficiencies in the practical application process because of poor thermal stability, and a low reduction efficiency. Constructing MnOx/CeO2 with other semiconductors is the most effective strategy to further improve catalytic performance. In this article, we discuss progress in the field of MnOx/CeO2-based ternary composites with an emphasis on the SCR of NOx by NH3. Recent progress in their fabrication and application, including suitable examples from the relevant literature, are analyzed and summarized. In addition, the interaction mechanisms between MnOx/CeO2 catalysts and NOx pollutants are comprehensively dissected. Finally, the review provides basic insights into prospects and challenges for the advancement of MnOx/CeO2-based ternary catalysts.

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 942
Author(s):  
Anastasia Maria Moschovi ◽  
Mattia Giuliano ◽  
Marios Kourtelesis ◽  
Giovanna Nicol ◽  
Ekaterini Polyzou ◽  
...  

The production of new automotive catalytic converters requires the increase of the quantity of Platinum Group Metals in order to deal with the strict emission standards that are imposed for vehicles. The use of PGMs coming from the recycling of spent autocatalysts could greatly reduce the cost of catalyst production for the automotive industry. This paper presents the synthesis of novel automotive Three-Way Catalysts (PLTWC, Pd/Rh = 55/5, 60 gPGMs/ft3) and diesel oxidation catalysts (PLDOC, Pt/Pd = 3/1, 110 gPGMs/ft3) from recovered PGMs, without further refinement steps. The catalysts were characterized and evaluated in terms of activity in comparison with benchmark catalysts produced using commercial metal precursors. The small-scale catalytic monoliths were successfully synthesized as evidenced by the characterization of the samples with XRF analysis, optical microscopy, and N2 physisorption. Hydrothermal ageing of the catalysts was performed and led to a significant decrease of the specific surface area of all catalysts (recycled and benchmarks) due to sintering of the support material and metal particles. The TWCs were studied for their activity in CO and unburned hydrocarbon oxidation reactions under a slightly lean environment of the gas mixture (λ > 1) as well as for their ability to reduce NOx under a slightly rich gas mixture (λ < 1). Recycled TWC fresh catalyst presented the best performance amongst the catalysts studied for the abatement of all pollutant gases, and they also showed the highest Oxygen Storage Capacity value. Moreover, comparing the aged samples, the catalyst produced from recycled PGMs presented higher activity than the one synthesized with the use of commercial PGM metal precursors. The results obtained for the DOC catalysts showed that the aged PLDOC catalyst outperformed both the fresh catalyst and the aged DOC catalyst prepared with the use of commercial metal precursors for the oxidation of CO, hydrocarbons, and NO. The latter reveals the effect of the presence of several impurities in the recovered PGMs solutions.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Katarzyna Świrk ◽  
Ye Wang ◽  
Changwei Hu ◽  
Li Li ◽  
Patrick Da Costa ◽  
...  

Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, temperature-programmed desorption of NH3 (NH3-TPD), and tested by the selective catalytic reduction by ammonia (NH3-SCR) of NO in the absence and presence of water vapor, under the experimental conditions representative of exhaust gases from stationary sources. The influence of SO2 on catalytic performance was also investigated. Among the studied catalysts, the Fe-Zr sample showed the most promising results in NH3-SCR, being active and highly selective to N2. The addition of SO2 markedly improved NO and NH3 conversions during NH3-SCR in the presence of H2O. The improvement in acidic surface properties is believed to be the cause.


Clay Minerals ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 665-672 ◽  
Author(s):  
K. Bahranowski ◽  
J. Janas ◽  
T. Machej ◽  
E. M. Serwicka ◽  
L. A. Vartikian

AbstractA series of V-doped titania-pillared clay catalysts, characterized by ICP-AES chemical analysis, X-ray diffraction, BET surface area measurement, and ESR spectroscopy, have been tested in the selective catalytic reduction of NO by NH3. An ESR analysis shows that V dopant is anchored to the titania pillars. Vanadyl species with differing degrees of in-plane V-O π-covalent bonding are produced depending on the method of sample preparation. Polymeric V species appear as the V content is increased. Catalytic performance of these systems depends on the method of preparation and on the V content. The best catalyst, converting 90-100% NO in the temperature range 523-623 K, is obtained by exchange of pillared montmorillonite with vanadyl ions, at an extent of exchange below the level where significant amounts of polymeric V species appear. The co-pillared catalyst, containing vanadyl centres characterized by a higher degree of in-plane ncovalent bonding (according to ESR), is less selective than the exchanged samples.


2010 ◽  
Vol 96 (3-4) ◽  
pp. 408-420 ◽  
Author(s):  
Fudong Liu ◽  
Hong He ◽  
Changbin Zhang ◽  
Zhaochi Feng ◽  
Lirong Zheng ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24177-24187 ◽  
Author(s):  
Haidi Xu ◽  
Mengmeng Sun ◽  
Shuang Liu ◽  
Yuanshan Li ◽  
Jianli Wang ◽  
...  

The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.


Sign in / Sign up

Export Citation Format

Share Document