automotive catalytic converters
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 3)

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1075
Author(s):  
Ivan Cornejo ◽  
Gonzalo Garreton ◽  
Robert E. Hayes

Monolith-type substrates are extensively used in automotive catalytic converters and have gained popularity in several other industrial processes. Despite their advantages over traditional unstructured catalysts, such as large surface area and low pressure drop, novel monolith configurations have not been investigated in depth. In this paper, we use a detailed computational model at the reactor scale, which considers entrance length, turbulence dissipation and internal diffusion limitations, to investigate the impact of using a dual cell substrate on conversion efficiency, pressure drop, and flow distribution. The substrate is divided into two concentric regions, one at its core and one at its periphery, and a different cell density is given to each part. According to the results, a difference of 40% in apparent permeability is sufficient to lead to a large flow maldistribution, which impacts conversion efficiency and pressure drop. The two mentioned variables show a positive or negative correlation depending on what part of the substrate—core or ring—has the highest permeability. This and other results contribute relevant evidence for further monolith optimization.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 942
Author(s):  
Anastasia Maria Moschovi ◽  
Mattia Giuliano ◽  
Marios Kourtelesis ◽  
Giovanna Nicol ◽  
Ekaterini Polyzou ◽  
...  

The production of new automotive catalytic converters requires the increase of the quantity of Platinum Group Metals in order to deal with the strict emission standards that are imposed for vehicles. The use of PGMs coming from the recycling of spent autocatalysts could greatly reduce the cost of catalyst production for the automotive industry. This paper presents the synthesis of novel automotive Three-Way Catalysts (PLTWC, Pd/Rh = 55/5, 60 gPGMs/ft3) and diesel oxidation catalysts (PLDOC, Pt/Pd = 3/1, 110 gPGMs/ft3) from recovered PGMs, without further refinement steps. The catalysts were characterized and evaluated in terms of activity in comparison with benchmark catalysts produced using commercial metal precursors. The small-scale catalytic monoliths were successfully synthesized as evidenced by the characterization of the samples with XRF analysis, optical microscopy, and N2 physisorption. Hydrothermal ageing of the catalysts was performed and led to a significant decrease of the specific surface area of all catalysts (recycled and benchmarks) due to sintering of the support material and metal particles. The TWCs were studied for their activity in CO and unburned hydrocarbon oxidation reactions under a slightly lean environment of the gas mixture (λ > 1) as well as for their ability to reduce NOx under a slightly rich gas mixture (λ < 1). Recycled TWC fresh catalyst presented the best performance amongst the catalysts studied for the abatement of all pollutant gases, and they also showed the highest Oxygen Storage Capacity value. Moreover, comparing the aged samples, the catalyst produced from recycled PGMs presented higher activity than the one synthesized with the use of commercial PGM metal precursors. The results obtained for the DOC catalysts showed that the aged PLDOC catalyst outperformed both the fresh catalyst and the aged DOC catalyst prepared with the use of commercial metal precursors for the oxidation of CO, hydrocarbons, and NO. The latter reveals the effect of the presence of several impurities in the recovered PGMs solutions.


2020 ◽  
pp. 146808742096640
Author(s):  
Benjamín Pla ◽  
Pedro Piqueras ◽  
Pau Bares ◽  
André Aronis

This work presents the development of a model to capture the NOx sensors cross sensitivity behavior based on [Formula: see text] sensor cell temperature, as well as a model do predict the slip of the NOx and NH3 after the SCR catalyst, as a way to reduce the error in the exhaust emissions estimation needed for feedback SCR control strategies. The emissions prediction model is based on the different cross sensitivity behavior of two distinct NOx sensors. The proposed models were tested and compared on a fully instrumented engine test bench when applied in a Worldwide harmonized Light vehicles Test Cycle (WLTC) and a full map cycle. As a result, the proposed model showed for NOx sensors cross sensitivity estimation an overall improvement of 34.8% for sensor 1 and 31.0% for sensor 2, and in terms of emissions prediction an overall improvement of 36.3% for NOx and 45.5% for NH3 slip.


2020 ◽  
Vol 22 (4) ◽  
pp. 1414-1423
Author(s):  
Camilla Maria Cova ◽  
Alessio Zuliani ◽  
Roberta Manno ◽  
Victor Sebastian ◽  
Rafael Luque

The catalytic activity of scrap ceramic-cores of automotive catalytic converters (SCATs) was investigated in the continuous-flow hydrogenation of different biomass-derived chemicals.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1719 ◽  
Author(s):  
Muniyandi Jeyaraj ◽  
Sangiliyandi Gurunathan ◽  
Muhammad Qasim ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.


Sign in / Sign up

Export Citation Format

Share Document