fresh catalyst
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
И.А. Щурова ◽  
Н.А. Алексеева ◽  
С.В. Сысолятин ◽  
В.В. Малыхин

Статья посвящена способу получения флороглюцина, представляющего интерес в качестве основы для конструирования лекарственных средств, полимеров различного назначения и малочувствительного взрывчатого вещества 1,3,5-триамино-2,4,6-тринитробензола. Современным и наиболее экологичным методом получения флороглюцина является каталитическое гидрирование 1,3,5-тринитробензола на палладиевом катализаторе до 1,3,5-триаминобензола и его последующий гидролиз. Использование палладиевых катализаторов позволяет проводить восстановление в мягких условиях, но их высокая стоимость обуславливает потребность в поиске путей снижения расхода палладия и, соответственно, себестоимости процесса. В данном исследовании показано, что использование 1 %-го Pd/сибунит (50 % к массе субстрата) в сочетании с водно-ацетоновым раствором в качестве среды при проведении гидрирования способствует более длительному сохранению активности катализатора. Установлено, что оптимальное соотношение ацетона и воды находится в диапазоне от 4:1 до 7:1. В этом случае может быть проведено до 20 циклов гидрирования без добавления свежего катализатора, за счет чего удается снизить расход палладия в три раза по сравнению с другими известными методиками. Кроме того, подход позволяет исключить из схемы синтеза токсичный растворитель метанол. Триаминобензол, полученный в ходе гидрирования, без выделения подвергается гидролизу в присутствии серной кислоты с образованием флороглюцина. Изучена зависимость выхода флороглюцина от мольного соотношения серной кислоты и тринитробензола. Установлено, что оптимальное соотношение серная кислота : тринитробензол составляет 2,0-2,4 моль/моль. Суммарный выход флороглюцина составляет 76 % в пересчете на тринитробензол. The study is concerned with a synthetic method for phloroglucinol that is of great concern as a scaffold for designing medicinal drugs, different-purpose polymers and the insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene. The current and most eco-benign method for the synthesis of phloroglucinol is through catalytic hydrogenation of 1,3,5-trinitrobenzene over the Pd catalyst to 1,3,5-triaminobenzene followed by its hydrolysis. The use of Pd catalysts allows the reduction under mild conditions, but their high cost necessitates the need to find ways how to spare the Pd usage and, consequently, the process cost. Here we demonstrated that the use of 1% Pd/Sibunite (50% to substrate weight) combined with a water-acetone solution as the medium in hydrogenation allows the catalyst to keep active longer. The optimum acetone-to-water ratio was found to be between 4:1 and 7:1. In this case, as many as 20 hydrogenation runs can be done without a fresh catalyst added whereby the Pd usage can be lowered threefold when compared to the other common methods in use. Besides, this approach allows the toxic solvent methanol to be expelled from the synthetic protocol. Triaminobenzene resulting from the hydrogenation without isolation undergoes hydrolysis in the presence of sulfuric acid to furnish phloroglucinol. The relationship between the phloroglucinol yield and the molar ratio of sulfuric acid and trinitrobenzene was also explored. The optimum sulfuric acid-to-trinitrobenzene ratio was found to be 2.0-2.4 mol/mol. The overall yield of phloroglucinol was 76% on a trinitrobenzene basis.


Author(s):  
Joseph W. Gregory ◽  
S. David Jackson

AbstractThe cascade reactions of phenylacetylene to ethylcyclohexane and 1-phenyl-1-propyne to propylcyclohexane were studied individually, under deuterium and competitively at 343 K and 3 barg pressure over a Rh/silica catalyst. Both systems gave similar activation energies for alkyne hydrogenation (56 ± 4 kJ mol−1 for phenylacetylene and 50 ± 4 kJ mol−1 for 1-phenyl-1-propyne). Over fresh catalyst the order of reactivity was styrene > phenylacetylene ≫ ethylbenzene. Whereas with the cascade hydrogenation starting with phenylacetylene, styrene hydrogenated much slower phenylacetylene even once all the phenylacetylene was hydrogenated. The activity of ethylbenzene was also reduced in the cascade reaction and after styrene hydrogenation. These reductions in rate were likely due to carbon laydown from phenylacetylene and styrene. Similar behavior was observed with the 1-phenyl-1-propyne cascade. Deuterium experiments revealed similar positive KIEs for phenylacetylene (2.6) and 1-phenyl-1-propyne (2.1). Ethylbenzene hydrogenation/deuteration gave a KIE of 1.6 obtained after styrene hydrogenation in contrast to the inverse KIE of 0.4 found with ethylbenzene hydrogenation/deuteration over a fresh catalyst, indicating a change in rate determining step. Competitive hydrogenation between phenylacetylene and styrene reduced the rate of phenylacetylene hydrogenation but increased selectivity to ethylbenzene suggesting a change in the flux of sub-surface hydrogen. In the competitive reaction between 1-phenyl-1-propyne and propylbenzene, the rate of hydrogenation of 1-phenyl-1-propyne was increased and the rate of alkene isomerization was decreased, likely due to an increase in the hydrogen flux for hydrogenation and a decrease in the hydrogen species active in methylstyrene isomerization.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 942
Author(s):  
Anastasia Maria Moschovi ◽  
Mattia Giuliano ◽  
Marios Kourtelesis ◽  
Giovanna Nicol ◽  
Ekaterini Polyzou ◽  
...  

The production of new automotive catalytic converters requires the increase of the quantity of Platinum Group Metals in order to deal with the strict emission standards that are imposed for vehicles. The use of PGMs coming from the recycling of spent autocatalysts could greatly reduce the cost of catalyst production for the automotive industry. This paper presents the synthesis of novel automotive Three-Way Catalysts (PLTWC, Pd/Rh = 55/5, 60 gPGMs/ft3) and diesel oxidation catalysts (PLDOC, Pt/Pd = 3/1, 110 gPGMs/ft3) from recovered PGMs, without further refinement steps. The catalysts were characterized and evaluated in terms of activity in comparison with benchmark catalysts produced using commercial metal precursors. The small-scale catalytic monoliths were successfully synthesized as evidenced by the characterization of the samples with XRF analysis, optical microscopy, and N2 physisorption. Hydrothermal ageing of the catalysts was performed and led to a significant decrease of the specific surface area of all catalysts (recycled and benchmarks) due to sintering of the support material and metal particles. The TWCs were studied for their activity in CO and unburned hydrocarbon oxidation reactions under a slightly lean environment of the gas mixture (λ > 1) as well as for their ability to reduce NOx under a slightly rich gas mixture (λ < 1). Recycled TWC fresh catalyst presented the best performance amongst the catalysts studied for the abatement of all pollutant gases, and they also showed the highest Oxygen Storage Capacity value. Moreover, comparing the aged samples, the catalyst produced from recycled PGMs presented higher activity than the one synthesized with the use of commercial PGM metal precursors. The results obtained for the DOC catalysts showed that the aged PLDOC catalyst outperformed both the fresh catalyst and the aged DOC catalyst prepared with the use of commercial metal precursors for the oxidation of CO, hydrocarbons, and NO. The latter reveals the effect of the presence of several impurities in the recovered PGMs solutions.


Author(s):  
Irina Il'ina ◽  
Maksim Polevik

The possibility of optimizing the technological regime of the reactor-regenerator unit of the GC-3 installation by developing an automatic system for loading fresh catalyst and afterburning promoter is considered


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Ravishankar Mahadevan ◽  
Sushil Adhikari ◽  
Rajdeep Shakya ◽  
Oladiran Fasina

In this study, the contamination of H+ZSM-5 catalyst by calcium, potassium and sodium was investigated by deactivating the catalyst with various concentrations of these inorganics, and the subsequent changes in the properties of the catalyst are reported. Specific surface area analysis of the catalysts revealed a progressive reduction with increasing concentrations of the inorganics, which could be attributed to pore blocking and diffusion resistance. Chemisorption studies (NH3-TPD) showed that the Bronsted acid sites on the catalyst had reacted with potassium and sodium, resulting in a clear loss of active sites, whereas the presence of calcium did not appear to cause extensive chemical deactivation. Pyrolysis experiments revealed the progressive loss in catalytic activity, evident due the shift in selectivity from producing only aromatic hydrocarbons (benzene, toluene, xylene, naphthalenes and others) with the fresh catalyst to oxygenated compounds such as phenols, guaiacols, furans and ketones with increasing contamination by the inorganics. The carbon yield of aromatic hydrocarbons decreased from 22.3% with the fresh catalyst to 1.4% and 2.1% when deactivated by potassium and sodium at 2 wt %, respectively. However, calcium appears to only cause physical deactivation.


Author(s):  
Elena Ivashkina ◽  
Emiliya Ivanchina ◽  
Igor Dolganov ◽  
Vyacheslav Chuzlov ◽  
Alexander Kotelnikov ◽  
...  

H2SO4-catalysed isobutane alkylation with alkenes is an important industrial process used to obtain high-octane alkylate. In this process, the concentration of H2SO4 is one of the main parameters. For alkylation, sulphuric acid containing 88%–98% monohydrate is typically used. However, only a H2SO4 concentration of 95%–96% enables alkylate with the maximum octane number to be obtained. Changes in H2SO4 concentration due to decontamination are the main cause of process variations. Therefore, it is necessary to maintain the reactor acid concentration at a constant level by regulating the supply of fresh catalyst and pumping out any spent acid. The main reasons for the decrease in the H2SO4 concentration are accumulation of high-molecular organic compounds and dilution by water. One way to improve and predict unsteady alkylation processes is to develop a mathematical model that considers catalyst deactivation. In the present work, the formation reactions of undesired substances were used in the description of the alkylation process, indicating the sensitivity of the prediction to H2SO4 activity variations. This was used for calculation the optimal technological modes ensuring the maximum selectivity and stability of the chemical–technological system under varying hydrocarbon feedstock compositions.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1370
Author(s):  
Santhosh K. Matam ◽  
Caitlin Moffat ◽  
Pip Hellier ◽  
Michael Bowker ◽  
Ian P. Silverwood ◽  
...  

A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains highly dispersed Mo oxide species in the +6 oxidation state with tetrahedral coordination as [MoVIO4]2− moieties. In situ X-ray Absorption Spectroscopy (XAS) shows that [MoVIO4]2− is present during the first ODP run of the reaction cycle and is reduced to MoIVO2 in the following DP run. The reduced species are partly re-oxidised in the subsequent second ODP run of the reaction cycle. The partly re-oxidised species exhibit oxidation and coordination states that are lower than 6 but higher than 4 and are referred to as MoxOy. These species significantly improved propene formation (relatively 27% higher) in the second ODP run at similar propane conversion activity. Accordingly, the initial tetrahedral [MoVIO4]2− present during the first ODP run of the reaction cycle is active for propane conversion; however, it is unselective for propene. The reduced MoIVO2 species are relatively less active and selective for DP. It is suggested that the MoxOy species generated by the reaction cycle are active and selective for ODP. The vibrational spectroscopic data indicate that the retained surface species are amorphous carbon deposits with a higher proportion of aromatic/olefinic like species.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1213 ◽  
Author(s):  
Ana Belén Dongil ◽  
Qi Zhang ◽  
Laura Pastor-Pérez ◽  
Tomás Ramírez-Reina ◽  
Antonio Guerrero-Ruiz ◽  
...  

Mitigation of anthropogenic CO2 emissions possess a major global challenge for modern societies. Herein, catalytic solutions are meant to play a key role. Among the different catalysts for CO2 conversion, Cu supported molybdenum carbide is receiving increasing attention. Hence, in the present communication, we show the activity, selectivity and stability of fresh-prepared β-Mo2C catalysts and compare the results with those of Cu/Mo2C, Cs/Mo2C and Cu/Cs/Mo2C in CO2 hydrogenation reactions. The results show that all the catalysts were active, and the main reaction product was methanol. Copper, cesium and molybdenum interaction is observed, and cesium promoted the formation of metallic Mo on the fresh catalyst. The incorporation of copper is positive and improves the activity and selectivity to methanol. Additionally, the addition of cesium favored the formation of Mo0 phase, which for the catalysts Cs/Mo2C seemed to be detrimental for the conversion and selectivity. Moreover, the catalysts promoted by copper and/or cesium underwent redox surface transformations during the reaction, these were more obvious for cesium doped catalysts, which diminished their catalytic performance.


2020 ◽  
Vol 16 (1) ◽  
pp. 22
Author(s):  
Inasanti Pandan Wangi ◽  
Indra Perdana

The deactivation of solid catalyst is one of the catalyst parameters that has to be known to predict how long catalyst can be used to catalyze a reaction. In this research, the catalyst was applied to catalyze the transesterification of corn oil with methanol. Sodium silicate was produced from NaOH and silica was extracted by gelation method from Dieng Geothermal Power Plant solid sludge which had 55% of silica content. Sodium silicate catalyst was activated by calcination process at 400oC, with heating rate of 20ºC/min, and holding time of 3 hours. The transesterification was run at 60oC, methanol and corn oil mole ratio of 9:1 and 5% (w/w) catalyst for 60 minutes. The sample was taken at 0, 5, 10, 20, 40 and 60 minutes after corn oil was poured into the flask. The used catalyst was separated from the reactant and product, was then washed with methanol and was heated at 120 oC in the oven for 2 hours until it dried. The catalyst was then used for catalyzing the next experiment run for the next four cycle. This research showed that the conversion of the reaction decreased with every reaction cycle. The most fitting reaction kinetics was modeled with second order kinetics. The highest conversion obtained using fresh catalyst was 91,67%.


2019 ◽  
Vol 9 (23) ◽  
pp. 6647-6658 ◽  
Author(s):  
Juan Shao ◽  
Tingjun Fu ◽  
Zhe Ma ◽  
Chunmei Zhang ◽  
Han Li ◽  
...  

Mesoporous ZSM-5 with large external surface and strong acidity were created through desilication–recrystallization of nano-sized silicalite-1, and the catalytic lifetime of its regenerated catalyst is 2.5 times longer than fresh catalyst.


Sign in / Sign up

Export Citation Format

Share Document