scholarly journals Viroids as a Tool to Study RNA-Directed DNA Methylation in Plants

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.

2016 ◽  
Vol 4 (41) ◽  
pp. 6620-6639 ◽  
Author(s):  
Jinming Li ◽  
Shanshan Xue ◽  
Zong-Wan Mao

RNA interference (RNAi) is a naturally occurring endogenous regulatory process in which the short double-stranded RNA causes sequence-specific post-transcriptional gene silencing.


Author(s):  
Elisabetta Ullu ◽  
Appolinaire Djikeng ◽  
Huafang Shi ◽  
Christian Tschudi

In animals and protozoa gene–specific double–stranded RNA triggers the degradation of homologous cellular RNAs, the phenomenon of RNA interference (RNAi). RNAi has been shown to represent a novel paradigm in eukaryotic biology and a powerful method for studying gene function. Here we discuss RNAi in terms of its mechanism, its relationship to other post–transcriptional gene silencing phenomena in plants and fungi, its connection to retroposon silencing and possibly to translation, and its biological role. Among the organisms where RNAi has been demonstrated the protozoan parasite Trypanosoma brucei represents the most ancient branch of the eukaryotic lineage. We provide a synopsis of what is currently known about RNAi in T. brucei and outline the recent advances that make RNAi the method of choice to disrupt gene function in these organisms.


2000 ◽  
pp. 123-140 ◽  
Author(s):  
Mariëlle W. M. Muskens ◽  
Adriënne P. A. Vissers ◽  
Joseph N. M. Mol ◽  
Jan M. Kooter

2019 ◽  
Vol 47 (17) ◽  
pp. 9104-9114 ◽  
Author(s):  
Christelle Taochy ◽  
Agnès Yu ◽  
Nicolas Bouché ◽  
Nathalie Bouteiller ◽  
Taline Elmayan ◽  
...  

Abstract Spontaneous post-transcriptional silencing of sense transgenes (S-PTGS) is established in each generation and is accompanied by DNA methylation, but the pathway of PTGS-dependent DNA methylation is unknown and so is its role. Here we show that CHH and CHG methylation coincides spatially and temporally with RDR6-dependent products derived from the central and 3′ regions of the coding sequence, and requires the components of the RNA-directed DNA methylation (RdDM) pathway NRPE1, DRD1 and DRM2, but not CLSY1, NRPD1, RDR2 or DCL3, suggesting that RDR6-dependent products, namely long dsRNAs and/or siRNAs, trigger PTGS-dependent DNA methylation. Nevertheless, none of these RdDM components are required to establish S-PTGS or produce a systemic silencing signal. Moreover, preventing de novo DNA methylation in non-silenced transgenic tissues grafted onto homologous silenced tissues does not inhibit the triggering of PTGS. Overall, these data indicate that gene body DNA methylation is a consequence, not a cause, of PTGS, and rule out the hypothesis that a PTGS-associated DNA methylation signal is transmitted independent of a PTGS signal.


Sign in / Sign up

Export Citation Format

Share Document