Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing

2000 ◽  
pp. 123-140 ◽  
Author(s):  
Mariëlle W. M. Muskens ◽  
Adriënne P. A. Vissers ◽  
Joseph N. M. Mol ◽  
Jan M. Kooter
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


2020 ◽  
Vol 104 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Felipe de Felippes ◽  
Marcus McHale ◽  
Rachel L. Doran ◽  
Sally Roden ◽  
Andrew L. Eamens ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 91 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Carmen Hernández

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 104 ◽  
Author(s):  
Teng Sun ◽  
Meng-Yang Li ◽  
Pei-Feng Li ◽  
Ji-Min Cao

Autophagy, which is an evolutionarily conserved process according to the lysosomal degradation of cellular components, plays a critical role in maintaining cell homeostasis. Autophagy and mitochondria autophagy (mitophagy) contribute to the preservation of cardiac homeostasis in physiological settings. However, impaired or excessive autophagy is related to a variety of diseases. Recently, a close link between autophagy and cardiac disorders, including myocardial infarction, cardiac hypertrophy, cardiomyopathy, cardiac fibrosis, and heart failure, has been demonstrated. MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of approximately 21–22 nucleotides (nt), which are distributed widely in viruses, plants, protists, and animals. They function in mediating the post-transcriptional gene silencing. A growing number of studies have demonstrated that miRNAs regulate cardiac autophagy by suppressing the expression of autophagy-related genes in a targeted manner, which are involved in the pathogenesis of heart diseases. This review summarizes the role of microRNAs in cardiac autophagy and related cardiac disorders. Furthermore, we mainly focused on the autophagy regulation pathways, which consisted of miRNAs and their targeted genes.


2001 ◽  
Vol 82 (11) ◽  
pp. 2827-2836 ◽  
Author(s):  
Chu-Hui Chiang ◽  
Ju-Jung Wang ◽  
Fuh-Jyh Jan ◽  
Shyi-Dong Yeh ◽  
Dennis Gonsalves

Transgenic papaya cultivars SunUp and Rainbow express the coat protein (CP) gene of the mild mutant of papaya ringspot virus (PRSV) HA. Both cultivars are resistant to PRSV HA and other Hawaii isolates through homology-dependent resistance via post-transcriptional gene silencing. However, Rainbow, which is hemizygous for the CP gene, is susceptible to PRSV isolates from outside Hawaii, while the CP-homozygous SunUp is resistant to most isolates but susceptible to the YK isolate from Taiwan. To investigate the role of CP sequence similarity in overcoming the resistance of Rainbow, PRSV HA recombinants with various CP segments of the YK isolate were constructed and evaluated on Rainbow, SunUp and non-transgenic papaya. Non-transgenic papaya were severely infected by all recombinants, but Rainbow plants developed a variety of symptoms. On Rainbow, a recombinant with the entire CP gene of YK caused severe symptoms, while recombinants with only partial YK CP sequences produced a range of milder symptoms. Interestingly, a recombinant with a YK segment from the 5′ region of the CP gene caused very mild, transient symptoms, whereas recombinants with YK segments from the middle and 3′ parts of the CP gene caused prominent and lasting symptoms. SunUp was resistant to all but two recombinants, which contained the entire CP gene or the central and 3′-end regions of the CP gene and the 3′ non-coding region of YK, and the resulting symptoms were mild. It is concluded that the position of the heterologous sequences in the recombinants influences their pathogenicity on Rainbow.


2021 ◽  
Author(s):  
Ganna Reshetnyak ◽  
Jonathan M. Jacobs ◽  
Florence Auguy ◽  
Coline Sciallano ◽  
Lisa Claude ◽  
...  

ABSTRACTNon-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences often encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and some xisRNA loci coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document