scholarly journals Mechanisms of Plasticity in Subcortical Visual Areas

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3162
Author(s):  
Maël Duménieu ◽  
Béatrice Marquèze-Pouey ◽  
Michaël Russier ◽  
Dominique Debanne

Visual plasticity is classically considered to occur essentially in the primary and secondary cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the superior colliculus (SC) have long been held as basic structures responsible for a stable and defined function. In this model, the dLGN was considered as a relay of visual information travelling from the retina to cortical areas and the SC as a sensory integrator orienting body movements towards visual targets. However, recent findings suggest that both dLGN and SC neurons express functional plasticity, adding unexplored layers of complexity to their previously attributed functions. The existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical visual areas.

2021 ◽  
Author(s):  
Mael Dumenieu ◽  
Beatrice Marqueze-Pouey ◽  
Michael Russier ◽  
Dominique Debanne

Visual plasticity is classically considered to occur essentially in the primary and secondarycortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN)or the superior colliculus (SC) have long been held as basic structures responsible for a stableand defined function. In this model, the dLGN was considered as a relay of visual informationtravelling from the retina to cortical areas and the SC as a sensory integrator orienting bodymovements towards visual targets. However, recent findings suggest that both dLGN and SCneurons express functional plasticity, adding unexplored layers of complexity to theirpreviously attributed functions. The existence of neuronal plasticity at the level of visualsubcortical areas redefines our approach of the visual system. The aim of this paper istherefore to review the cellular and molecular mechanisms for activity-dependent plasticity ofsynaptic transmission and of cellular properties in subcortical visual areas.


2017 ◽  
Vol 34 ◽  
Author(s):  
CHARLES L. COX ◽  
JOSEPH A. BEATTY

AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.


2007 ◽  
Vol 24 (6) ◽  
pp. 857-874 ◽  
Author(s):  
THOMAS FITZGIBBON ◽  
BRETT A. SZMAJDA ◽  
PAUL R. MARTIN

The thalamic reticular nucleus (TRN) supplies an important inhibitory input to the dorsal thalamus. Previous studies in non-primate mammals have suggested that the visual sector of the TRN has a lateral division, which has connections with first-order (primary) sensory thalamic and cortical areas, and a medial division, which has connections with higher-order (association) thalamic and cortical areas. However, the question whether the primate TRN is segregated in the same manner is controversial. Here, we investigated the connections of the TRN in a New World primate, the marmoset (Callithrix jacchus). The topography of labeled cells and terminals was analyzed following iontophoretic injections of tracers into the primary visual cortex (V1) or the dorsal lateral geniculate nucleus (LGNd). The results show that rostroventral TRN, adjacent to the LGNd, is primarily connected with primary visual areas, while the most caudal parts of the TRN are associated with higher order visual thalamic areas. A small region of the TRN near the caudal pole of the LGNd (foveal representation) contains connections where first (lateral TRN) and higher order visual areas (medial TRN) overlap. Reciprocal connections between LGNd and TRN are topographically organized, so that a series of rostrocaudal injections within the LGNd labeled cells and terminals in the TRN in a pattern shaped like rostrocaudal overlapping “fish scales.” We propose that the dorsal areas of the TRN, adjacent to the top of the LGNd, represent the lower visual field (connected with medial LGNd), and the more ventral parts of the TRN contain a map representing the upper visual field (connected with lateral LGNd).


2015 ◽  
Vol 114 (2) ◽  
pp. 1321-1330 ◽  
Author(s):  
Christopher A. Procyk ◽  
Cyril G. Eleftheriou ◽  
Riccardo Storchi ◽  
Annette E. Allen ◽  
Nina Milosavljevic ◽  
...  

In advanced retinal degeneration loss of rods and cones leaves melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) as the only source of visual information. ipRGCs drive non-image-forming responses (e.g., circadian photoentrainment) under such conditions but, despite projecting to the primary visual thalamus [dorsal lateral geniculate nucleus (dLGN)], do not support form vision. We wished to determine what precludes ipRGCs supporting spatial discrimination after photoreceptor loss, using a mouse model ( rd/rd cl) lacking rods and cones. Using multielectrode arrays, we found that both RGCs and neurons in the dLGN of this animal have clearly delineated spatial receptive fields. In the retina, they are typically symmetrical, lack inhibitory surrounds, and have diameters in the range of 10–30° of visual space. Receptive fields in the dLGN were larger (diameters typically 30–70°) but matched the retinotopic map of the mouse dLGN. Injections of a neuroanatomical tracer (cholera toxin β-subunit) into the dLGN confirmed that retinotopic order of ganglion cell projections to the dLGN and thalamic projections to the cortex is at least superficially intact in rd/rd cl mice. However, as previously reported for deafferented ipRGCs, onset and offset of light responses have long latencies in the rd/rd cl retina and dLGN. Accordingly, dLGN neurons failed to track dynamic changes in light intensity in this animal. Our data reveal that ipRGCs can convey spatial information in advanced retinal degeneration and identify their poor temporal fidelity as the major limitation in their ability to provide information about spatial patterns under natural viewing conditions.


2018 ◽  
Author(s):  
Jack Waters ◽  
Eric Lee ◽  
Nathalie Gaudreault ◽  
Fiona Griffin ◽  
Jerome Lecoq ◽  
...  

ABSTRACTVisual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serve different functions in the processing of visual information. In our previous work, we noted that retinotopic maps of cortical visual areas differed between mice, but did not quantify these differences or determine the relative contributions of biological variation and measurement noise. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse. We find that there is substantial biological variation in the sizes of visual areas, with some visual areas varying in size by two-fold across the population of mice.


1994 ◽  
Vol 33 (11) ◽  
pp. 1413-1418 ◽  
Author(s):  
J. Cudeiro ◽  
K.L. Grieve ◽  
C. Rivadulla ◽  
R. Rodríguez ◽  
S. Martínez-Conde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document