scholarly journals Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1189
Author(s):  
Rihab Gam ◽  
Minkyung Sung ◽  
Arun Prasad Pandurangan

The process of direct cell reprogramming, also named transdifferentiation, permits for the conversion of one mature cell type directly into another, without returning to a dedifferentiated state. This makes direct reprogramming a promising approach for the development of several cellular and tissue engineering therapies. To achieve the change in the cell identity, direct reprogramming requires an arsenal of tools that combine experimental and computational techniques. In the recent years, several methods of transdifferentiation have been developed. In this review, we will introduce the concept of direct cell reprogramming and its background, and cover the recent developments in the experimental and computational prediction techniques with their applications. We also discuss the challenges of translating this technology to clinical setting, accompanied with potential solutions.

Author(s):  
Joel Bernstein

The application of computational techniques to polymorphic systems is reviewed. Topics covered include the energetics of molecular geometric features (bond lengths, bond angles, torsion angles) and the energetics of intermolecular interactions of various types. Methods and techniques for the presentation of polymorphic structures are described, followed by some historically important early examples of conformational polymorphism. The latter subject is treated in light of recent developments, including some exemplary studies of conformational polymorphism and the prototypical example of “ROY” is discussed in detail. The computational prediction and comparison of polymorphs is discussed in the framework of the computational prediction of crystal structures. Methods discussed on polymorphs include the comparison based on geometric criteria, comparison based on Hirshfeld surfaces, a comparison based on energetic environment, comparison of X-ray diffraction patterns, and the use of partitioned lattice energy to investigate the details of similarities and differences in polymorphic structures.


2018 ◽  
Author(s):  
Fengchao Wang ◽  
Yueguang Liu ◽  
Yutong Pang ◽  
Fei Liu ◽  
Xiang Li ◽  
...  

2014 ◽  
Vol 33 (2-3) ◽  
pp. 641-655 ◽  
Author(s):  
Michael T. Schweizer ◽  
Charles G. Drake

2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


2018 ◽  
Vol 03 (03n04) ◽  
pp. 1840002 ◽  
Author(s):  
Dandan Lyu ◽  
Shaofan Li

The development of crystal plasticity theory based on dislocation patterns dynamics has been an outstanding problem in materials science and condensed matter of physics. Dislocation is the origin of crystal plasticity, and it is both the individual dislocation behavior as well as the aggregated dislocations behaviors that govern the plastic flow. The interactions among dislocations are complex statistical and stochastic events, in which the spontaneous emergence of organized dislocation patterns formations is the most critical and intriguing events. Dislocation patterns consist of quasi-periodic dislocation-rich and dislocation poor regions, e.g. cells, veins, labyrinths, ladders structures, etc. during cyclic loadings. Dislocation patterns have prominent and decisive effects on work hardening and plastic strain localization, and thus these dislocation micro-structures are responsible to material properties at macroscale. This paper reviews the recent developments of experimental observation, physical modeling, and computer modeling on dislocation microstructure. In particular, we focus on examining the mechanism towards plastic deformation. The progress and limitations of different experiments and modeling approaches are discussed and compared. Finally, we share our perspectives on current issues and future challenges in both experimental, analytical modeling, and computational aspects of dislocation pattern dynamics.


Sign in / Sign up

Export Citation Format

Share Document