Cellular Reprogramming Call for Papers: Special Issue on Direct Cell Reprogramming

2021 ◽  
Vol 23 (5) ◽  
pp. 263-263
2018 ◽  
Author(s):  
Fengchao Wang ◽  
Yueguang Liu ◽  
Yutong Pang ◽  
Fei Liu ◽  
Xiang Li ◽  
...  

Author(s):  
Nariaki Nakamura ◽  
Xiaobing Shi ◽  
Radbod Darabi ◽  
Yong Li

Cellular reprogramming is a fundamental topic in the research of stem cells and molecular biology. It is widely investigated and its understanding is crucial for learning about different aspects of development such as cell proliferation, determination of cell fate and stem cell renewal. Other factors involved during development include hypoxia and epigenetics, which play major roles in the development of tissues and organs. This review will discuss the involvement of hypoxia and epigenetics in the regulation of cellular reprogramming and how interplay between each factor can contribute to different cellular functions as well as tissue regeneration.


Nature ◽  
2009 ◽  
Vol 462 (7273) ◽  
pp. 595-601 ◽  
Author(s):  
Jacob Hanna ◽  
Krishanu Saha ◽  
Bernardo Pando ◽  
Jeroen van Zon ◽  
Christopher J. Lengner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoichi Sekita ◽  
Yuki Sugiura ◽  
Akari Matsumoto ◽  
Yuki Kawasaki ◽  
Kazuya Akasaka ◽  
...  

Abstract Background Phosphoinositide-3 kinase (PI3K)/AKT signaling participates in cellular proliferation, survival and tumorigenesis. The activation of AKT signaling promotes the cellular reprogramming including generation of induced pluripotent stem cells (iPSCs) and dedifferentiation of primordial germ cells (PGCs). Previous studies suggested that AKT promotes reprogramming by activating proliferation and glycolysis. Here we report a line of evidence that supports the notion that AKT signaling is involved in TET-mediated DNA demethylation during iPSC induction. Methods AKT signaling was activated in mouse embryonic fibroblasts (MEFs) that were transduced with OCT4, SOX2 and KLF4. Multiomics analyses were conducted in this system to examine the effects of AKT activation on cells undergoing reprogramming. Results We revealed that cells undergoing reprogramming with artificially activated AKT exhibit enhanced anabolic glucose metabolism and accordingly increased level of cytosolic α-ketoglutarate (αKG), which is an essential cofactor for the enzymatic activity of the 5-methylcytosine (5mC) dioxygenase TET. Additionally, the level of TET is upregulated. Consistent with the upregulation of αKG production and TET, we observed a genome-wide increase in 5-hydroxymethylcytosine (5hmC), which is an intermediate in DNA demethylation. Moreover, the DNA methylation level of ES-cell super-enhancers of pluripotency-related genes is significantly decreased, leading to the upregulation of associated genes. Finally, the transduction of TET and the administration of cell-permeable αKG to somatic cells synergistically enhance cell reprogramming by Yamanaka factors. Conclusion These results suggest the possibility that the activation of AKT during somatic cell reprogramming promotes epigenetic reprogramming through the hyperactivation of TET at the transcriptional and catalytic levels.


Author(s):  
Xinhui Liu ◽  
Aamir Khan ◽  
Huan Li ◽  
Shensen Wang ◽  
Xuechai Chen ◽  
...  

: Emerging evidence suggests that ascorbic acid (vitamin C) enhances the reprogramming process by multiple mechanisms. This is primarily due to its cofactor role in Fe(II) and 2-oxoglutarate-dependent dioxygenases, including the DNA demethylases Ten Eleven Translocase (TET) and histone demethylases. Epigenetic variations have been shown to play a critical role in somatic cell reprogramming. DNA methylation and histone methylation are extensively recognized as barriers to somatic cell reprogramming. N6-methyladenosine (m6A), known as RNA methylation, is an epigenetic modification of mRNAs and has also been shown to play a role in regulating cellular reprogramming. Multiple cofactors are reported to promote the activity of demethylases, including vitamin C. This review focuses on examining the evidence and mechanism of vitamin C in DNA and histone demethylation and highlights its potential involvement in regulating m6A demethylation. It also shows the significant contribution of vitamin C in epigenetic regulation and the affiliation of demethylases with vitamin C-facilitated epigenetic reprogramming.


Sign in / Sign up

Export Citation Format

Share Document