scholarly journals Loss of ZC4H2 and RNF220 Inhibits Neural Stem Cell Proliferation and Promotes Neuronal Differentiation

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1600
Author(s):  
Longlong Zhang ◽  
Maosen Ye ◽  
Liang Zhu ◽  
Jingmei Cha ◽  
Chaocui Li ◽  
...  

The ubiquitin E3 ligase RNF220 and its co-factor ZC4H2 are required for multiple neural developmental processes through different targets, including spinal cord patterning and the development of the cerebellum and the locus coeruleus. Here, we explored the effects of loss of ZC4H2 and RNF220 on the proliferation and differentiation of neural stem cells (NSCs) derived from mouse embryonic cortex. We showed that loss of either ZC4H2 or RNF220 inhibits the proliferation and promotes the differentiation abilities of NSCs in vitro. RNA-Seq profiling revealed 132 and 433 differentially expressed genes in the ZC4H2−/− and RNF220−/− NSCs, compared to wild type (WT) NSCs, respectively. Specifically, Cend1, a key regulator of cell cycle exit and differentiation of neuronal precursors, was found to be upregulated in both ZC4H2−/− and RNF220−/− NSCs at the mRNA and protein levels. The targets of Cend1, such as CyclinD1, Notch1 and Hes1, were downregulated both in ZC4H2−/− and RNF220−/− NSCs, whereas p53 and p21 were elevated. ZC4H2−/− and RNF220−/− NSCs showed G0/G1 phase arrest compared to WT NSCs in cell cycle analysis. These results suggested that ZC4H2 and RNF220 are likely involved in the regulation of neural stem cell proliferation and differentiation through Cend1.

2010 ◽  
Vol 107 (5) ◽  
pp. 1876-1881 ◽  
Author(s):  
Chunnian Zhao ◽  
GuoQiang Sun ◽  
Shengxiu Li ◽  
Ming-Fei Lang ◽  
Su Yang ◽  
...  

Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document