scholarly journals Electrochemically Prepared Unzipped Single Walled Carbon Nanotubes-MnO2 Nanostructure Composites for Hydrogen Peroxide and Glucose Sensing

Chemosensors ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
A. B. M. Zakaria ◽  
Danuta Leszczynska

Amperometric hydrogen peroxide (H2O2) and glucose biosensors based on unzipped carbon nanotubes with modified glassy carbon electrode (GCE) have been successfully fabricated via a facile electrochemical oxidative method. In this work, we investigated the feasibility of this new form of carbon nanomaterial as a substrate electrode material for fabricating sensitive platform for H2O2 and glucose sensors. For this purpose, the manganese oxide (MnO2)/unzipped single-walled carbon nanotubes (SWCNTs) film was synthesized by the cyclic voltammetry method. The developed sensing film, MnO2/unzipped SWCNTs/GCE, displayed a satisfactory analytical performance for H2O2, including a wide linear range of 2.0 × 10−6 to 5.0 × 10−3 M with a detection limit of 0.31 × 10−6 M (10.7 ppb). This film was further applied for glucose sensing with a linearity range of 0.01 to 1.2 mM with a correlation coefficient of 0.9822 in the physiological pH (7.4). This facile, fast, environmentally-friendly, and economical preparation strategy of carbon nanomaterial-based electrode materials opens up the possibility of developing high quality biocompatible hydrogen peroxide and glucose sensors.

2019 ◽  
Vol 5 (4) ◽  
pp. 65 ◽  
Author(s):  
Varun Shenoy Gangoli ◽  
M. Anto Godwin ◽  
Gadhadar Reddy ◽  
Robert Kelley Bradley ◽  
Andrew R. Barron

High-pressure carbon monoxide (HiPco)-synthesized single-walled carbon nanotubes (SWCNTs) have been a widely studied carbon nanomaterial for nearly two decades. It has been the de facto standard for SWCNT research, be it functionalization, separation and purification, or composites, as a result of the consistent, high-quality material that was made available at an affordable price to researchers worldwide. The recent shutdown of the HiPco reactor at Rice University has resulted in a scarcity of HiPco material available to the research community, and a new source of similar SWCNTs is desperately needed. Continued research and development on the design, materials used, and the overall process have led to a new HiPco material, referred to as NoPo HiPCO®, as an alternative to the erstwhile Rice HiPco SWCNTs. In this work, we have compared the two HiPco materials, and aim to provide more clarity for researchers globally on the state of HiPco SWCNTs for research and applications alike in 2019.


Sign in / Sign up

Export Citation Format

Share Document