chemical functionalization
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 123)

H-INDEX

54
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 166
Author(s):  
Mariacristina Gagliardi ◽  
Giorgia Tori ◽  
Matteo Agostini ◽  
Francesco Lunardelli ◽  
Fabio Mencarelli ◽  
...  

Polyphenols are a family of compounds present in grapes, musts, and wines. Their dosage is associated with the grape ripening, correct must fermentation, and final wine properties. Owing to their anti-inflammatory properties, they are also relevant for health applications. To date, such compounds are detected mainly via standard chemical analysis, which is costly for constant monitoring and requires a specialized laboratory. Cheap and portable sensors would be desirable to reduce costs and speed up measurements. This paper illustrates the development of strategies for sensor surface chemical functionalization for polyphenol detection. We perform measurements by using a commercial quartz crystal microbalance with dissipation monitoring apparatus. Chemical functionalizations are based on proteins (bovine serum albumin and gelatin type A) or customized peptides derived from istatine-5 and murine salivary protein-5. Commercial oenological additives containing pure gallic tannins or proanthocyanidins, dissolved in water or commercial wine, are used for the analysis. Results indicate that selected functionalizations enable the detection of the two different tannin families, suggesting a relationship between the recorded signal and concentration. Gelatin A also demonstrates the ability to discriminate gallic tannins from proanthocyanidins. Outcomes are promising and pave the way for the exploitation of such devices for precision oenology.


Author(s):  
Geping Zhang ◽  
Dandan Lu ◽  
Keyang Yin ◽  
Nicolas Godbert ◽  
Renhao Dong ◽  
...  

Chemical functionalization of π-conjugated units plays a key role in fine tuning their supramolecular organizations and functions. Herein, five 1,8-naphthalimide derivatives were prepared where the naphthalimide moiety was attached to...


Author(s):  
Zheng-Zhe Lin ◽  
Xi-Mei Li ◽  
Xin-Wei Chen ◽  
Xi Chen

As promising catalytic systems, single-atom catalysts (SACs) demonstrate improved catalytic performance for electrochemical reactions. However, the pinning of metal atoms on surfaces usually depends on the adsorption on defects. In...


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Michalis Stavrou ◽  
Aristeidis Stathis ◽  
Ioannis Papadakis ◽  
Alina Lyuleeva-Husemann ◽  
Emmanouel Koudoumas ◽  
...  

The present work reports on the transient nonlinear optical (NLO) responses of two different types of 2D silicon nanosheets (SiNSs), namely hydride-terminated silicon nanosheets (SiNS–H) and 1-dodecene-functionalized silicon nanosheets (SiNS–dodecene). The main motivation of this study was to extend the knowledge regarding the NLO properties of these Si–based materials, for which very few published studies exist so far. For that purpose, the NLO responses of SiNS–H and SiNS–dodecene were investigated experimentally in the nanosecond regime at 532 and 1064 nm using the Z-scan technique, while the obtained results were compared to those of certain recently studied graphene nanosheets. SiNS–dodecene was found to exhibit the largest third-order susceptibility χ(3) values at both excitation wavelengths, most probably ascribed to the presence of point defects, indicating the importance of chemical functionalization for the efficient enhancement and tailoring of the NLO properties of these emerging 2D Si-based materials. Most importantly, the results demonstrated that the present silicon nanosheets revealed comparable and even larger NLO responses than graphene nanosheets. Undoubtedly, SiNSs could be strong competitors of graphene for applications in 2D-material-based photonics and optoelectronics.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Vitor Vlnieska ◽  
Aline S. Muniz ◽  
Angelo R. S. Oliveira ◽  
Maria A. F. César-Oliveira ◽  
Danays Kunka

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol−1 (Mw) and 3909 g·mol−1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical–chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.


Author(s):  
Andre Oliveira ◽  
Andreia Luisa da Rosa ◽  
Thomas Frauenheim

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3020
Author(s):  
Maria G. Burdanova ◽  
Marianna V. Kharlamova ◽  
Christian Kramberger ◽  
Maxim P. Nikitin

This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.


2021 ◽  
pp. 2100148
Author(s):  
Emilio Corte ◽  
Selene Sachero ◽  
Sviatoslav Ditalia Tchernij ◽  
Tobias Lühmann ◽  
Sébastien Pezzagna ◽  
...  

2021 ◽  
Author(s):  
Aidar M. Kuchkaev ◽  
Sneha Lavate ◽  
Airat M. Kuchkaev ◽  
Aleksandr V. Sukhov ◽  
Rohit Srivastava ◽  
...  

Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 873-888
Author(s):  
Cheng Peng ◽  
Xiaoyan Zhang

As the most studied two-dimensional material, graphene is still attracting a lot of attention from both academia and industry due to its fantastic properties such as lightness, excellent mechanical strength, and high conductivity of heat and electricity. As an important branch of graphene materials, graphene nanoplatelets show numerous applications such as in coating, fillers of polymer composites, energy conversion and storage devices, sensing, etc. Chemical functionalization can introduce different functional groups to graphene nanoplatelets and can potentially endow them with different properties and functions to meet the increasing demand in the fields mentioned above. In this minireview, we present an overview of the research progress of functionalized graphene nanoplatelets bearing hydroxyl, amino, and carboxylic terminal groups, including both covalent and noncovalent approaches. These terminal groups allow subsequent functionalization reactions to attach additional moieties. Relevant characterization techniques, different applications, challenges, and future directions of functionalized graphene nanoplatelets are also critically summarized.


Sign in / Sign up

Export Citation Format

Share Document