scholarly journals Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section

Children ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 205
Author(s):  
Marlies Bruckner ◽  
Lukas P. Mileder ◽  
Alisa Richter ◽  
Nariae Baik-Schneditz ◽  
Bernhard Schwaberger ◽  
...  

Body temperature (BT) management remains a challenge in neonatal intensive care, especially during resuscitation after birth. Our aim is to analyze whether there is an association between the BT and cerebral and peripheral tissue oxygen saturation (crSO2/cTOI and prSO2), arterial oxygen saturation (SpO2), and heart rate (HR). The secondary outcome parameters of five prospective observational studies are analyzed. We include preterm and term neonates born by Caesarean section who received continuous pulse oximetry and near-infrared spectroscopy monitoring during the first 15 min, and a rectal BT measurement once in minute 15 after birth. Four-hundred seventeen term and 169 preterm neonates are included. The BT did not correlate with crSO2/cTOI and SpO2. The BT correlated with the HR in all neonates (ρ = 0.210, p < 0.001) and with prSO2 only in preterm neonates (ρ = −0.285, p = 0.020). The BT was lower in preterm compared to term infants (36.7 [36.4–37.0] vs. 36.8 [36.6–37.0], p = 0.001) and prevalence of hypothermia was higher in preterm neonates (29.5% vs. 12.0%, p < 0.001). To conclude, the BT did not correlate with SpO2 and crSO2/cTOI, however, there was a weak positive correlation between the BT and the HR in the whole cohort and a weak correlation between the BT and prSO2 only in preterm infants. Preterm neonates had a statistically lower BT and suffered significantly more often from hypothermia during postnatal transition.

Author(s):  
T.M. Traub ◽  
R. Grabowski ◽  
K. Rais-Bahrami

Background: As neonates transition from a relatively hypoxic environment to extra-uterine life, arterial oxygen saturation dramatically increases. This transition occurs while most organs have not fully matured. The ability for immature tissue to adequately extract and utilize oxygen remains largely unknown. With the development of near-infrared spectroscopy (NIRS), measuring specific tissue oxygen saturation (StO2) noninvasively, clinicians can measure StO2 and determine if adequate tissue oxygenation is maintained. The objective of this study is to determine the relationships of NIRS brain and somatic autoregulation function to patients’ severity of illness. Methods: In this prospective cohort pilot study, after parental consent, neonates less than 34 weeks with arterial access, were enrolled. The FORE-SIGHT NIRS probe was placed on the forehead and abdominal wall for 24 hours. Continuous arterial blood pressure, SpO2 and cerebral and somatic NIRS were used to derive autoregulation function. Results: Data was obtained from 17 neonates (0.540 to 2.37 kg, gestation 23.0 to 33.2 weeks). The autoregulation function categorizes pressure passive index (PPI) values as good, borderline, or poor. For normal autoregulation function, PPI values tend to be low and fairly constant for a range of MAP. The PPI borderline zone is a hypothetical range of PPI values where autoregulation function transitions from good to poor. Conclusion: Our results show most premature neonates, as long as they maintained normal BP and systemic circulation can autoregulate cerebral perfusion. When BP are above or below the normal MAP for age, the neonate is at risk for losing brain and somatic autoregulation.


2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Mohammad Reza Moradi ◽  
Sharareh R. Niakan Kalhori ◽  
Marian Ghazi Saeedi ◽  
Mohammad Reza Zarkesh ◽  
Abbas Habibelahi ◽  
...  

Background: Different automated systems have been developed to improve the maintenance of target range of arterial oxygen saturation (SPO2) in premature infants with respiratory distress. Objectives: This study aimed to develop a remote closed-loop automatic oxygen control (RCLAC) as an efficient monitoring device. Then the means of the fraction of inspired oxygen (FIO2) and SPO2 by routine manual control (RMC) and RCLAC were compared. Methods: A developmental-descriptive study was carried out in an Iranian hospital (Tehran, Iran; 2015 - 2017). Twenty-two preterm infants with gestational age 24 - 28 weeks entered the study. A database was prepared based on pulse oximeter parameters. A Wi-Fi module was implemented to receive data from a pulse oximeter and send inputs to the user’s mobile. Vibrate alarm was implemented for high or low FIO2. After receiving notifications associated with an increase or decrease of FIO2 levels and user’s confirmation; the alterations were applied on the ventilator. Results: The mean FIO2 in the RMC system was significantly higher than the RCLAC system (98.1 ± 2.67 vs 79.5 ± 16.03; P = 0.0001). According to the results, when the SPO2 reached close to target SPO2 range and consequently FIO2 changed (decreased or increased based on target SPO2), heart rate showed a regular beating with a decrease in the numbers. Conclusions: Remote closed-loop automatic oxygen control system as a simple device could prevent preterm neonates from sustained hypo-hyperoxemic and arrhythmia episodes. Moreover, by using RCLAC, there was no need for continuous monitoring that may reduce the workload of NICU medical staff. Collecting reliable data and recording information in digital forms were also other benefits. Further studies with larger sample size are strongly suggested.


1994 ◽  
Vol 266 (5) ◽  
pp. R1483-R1487 ◽  
Author(s):  
L. G. Branco ◽  
S. C. Wood

We tested the hypothesis that hypercapnia will induce behavioral hypothermia in toads and that central chemoreceptors are involved in this response. Animals were tested in an enclosed temperature gradient supplied with different gas mixtures. Fractional inspired CO2 (FICO2) between 0 and 0.05 had no significant effect on selected body temperature, but FICO2 between 0.06 and 0.10 reduced the selected body temperature from U approximately 28 to 18 degrees C. To determine if the hypercapnia-induced hypothermia is mediated by acidification of central chemoreceptors, the pH of the fourth ventricle was kept constant by perfusion with mock cerebrospinal fluid of pH 7.7 or 7.1 (normal and acidic values, respectively). Ventricular perfusion at pH 7.7 under normocapnic conditions had no effect on body temperature. Hypercapnia (FICO2 0.08) failed to induce hypothermia when the fourth ventricle was kept at pH 7.7 and when hyperoxia was present. Acidic ventricular perfusion under normocapnic conditions decreased selected body temperature from 27 to 25 degrees C, a significant drop but much less than that due to hypercapnia producing the same brain pH, suggesting an important role of peripheral chemoreceptors. The physiological significance of behavioral hypothermia and nature of the peripheral stimulus were evaluated by measuring the effect of hypercapnia on arterial oxygen saturation, PO2, and pH at 15 and 25 degrees C. Arterial oxygen saturation was higher at the lower temperature. Increasing FICO2 decreased oxygen saturation at 25 degrees C but not at 15 degrees C. Arterial PO2 increased with increasing inspired CO2. This increase was greater at 15 degrees C than at 25 degrees C. Arterial pH decreased at both temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
pp. 1-9
Author(s):  
Aslinur Sircan-Kucuksayan ◽  
Oktay Eray ◽  
Murat Buyukaksu ◽  
Birce Gumus ◽  
Oguz Dursun ◽  
...  

BACKGROUND: Venous oxygen saturation reflects venous oxygenation status and can be used to assess treatment and prognosis in critically ill patients. A novel method that can measure central venous oxygen saturation (ScvO2) non-invasively may be beneficial and has the potential to change the management routine of critically ill patients. OBJECTIVE: The study aims to evaluate the potential of sublingual venous oxygen saturation (SsvO2) to be used in the estimation of ScvO2. METHODS: We have developed two different approaches to calculate SsvO2. In the first one, near-infrared spectroscopy (NIRS) measurements were performed directly on the sublingual veins. In the second approach, NIRS spectra were acquired from the sublingual tissue apart from the sublingual veins, and arterial oxygen saturation was measured using a pulse oximeter on the fingertip. RESULTS: Twenty-six healthy subjects were included in the study. In the first and second approaches, average SsvO2 values were 75.0% ± 1.8 and 75.8% ± 2.1, respectively. The results of the two different approaches were close to each other and similar to ScvO2 of healthy persons (> 70%). CONCLUSION: Oxygen saturation of sublingual veins has the potential to be used in intensive care units, non-invasively and in real-time, to estimate ScvO2.


Neonatology ◽  
2012 ◽  
Vol 101 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Rhonda J. Rosychuk ◽  
Ann Hudson-Mason ◽  
Dianne Eklund ◽  
Thierry Lacaze-Masmonteil

2017 ◽  
Vol 35 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Nousjka P. A. Vranken ◽  
Anouk A. M. A. Lindelauf ◽  
Antoine P. Simons ◽  
Marcel J. H. Ariës ◽  
Jos G. Maessen ◽  
...  

Femoral access in extracorporeal life support (ECLS) has been associated with regional variations in arterial oxygen saturation, potentially predisposing the patient to ischemic tissue damage. Current monitoring techniques, however, are limited to intermittent bedside evaluation of capillary refill among other factors. The aim of this study was to assess whether cerebral and limb regional tissue oxygen saturation (rSO2) values reflect changes in various patient-related parameters during venoarterial ECLS (VA-ECLS). This retrospective observational study included adults assisted by femorofemoral VA-ECLS. Bifrontal cerebral and bilateral limb tissue oximetry was performed for the entire duration of support. Hemodynamic data were analyzed parallel to cerebral and limb rSO2. A total of 23 patients were included with a median ECLS duration of 5 [1-20] days. Cardiac arrhythmias were observed in 12 patients, which was associated with a decreased mean rSO2 from 61%±11% to 51%±10% during atrial fibrillation and 67%±9% to 58%±10% during ventricular fibrillation ( P<0.001 for both). A presumably sudden increase in cardiac output due to myocardial recovery (n=8) resulted in a significant decrease in mean cerebral rSO2 from 73%±7% to 54%±6% and from 69%±9% to 53%±8% for the left and right cerebral hemisphere, respectively ( P=0.012 for both hemispheres). Also, right radial artery partial gas pressure for oxygen decreased from 15.6±2.8 to 8.3±1.9 kPa ( P=0.028). No differences were found in cerebral desaturation episodes between patients with and without neurologic complications. In six patients, limb rSO2 increased from on average 29.3±2.7 to 64.0±5.1 following insertion of a distal cannula in the femoral artery ( P=0.027). Likewise, restoration of flow in a clotted distal cannula inserted in the femoral artery was necessary in four cases and resulted in increased limb rSO2 from 31.3±0.8 to 79.5±9.0; P=0.068. Non-invasive tissue oximetry adequately reflects events influencing cerebral and limb perfusion and can aid in monitoring tissue perfusion in patients assisted by ECLS.


1994 ◽  
Vol 77 (6) ◽  
pp. 2753-2760 ◽  
Author(s):  
C. E. Elwell ◽  
M. Cope ◽  
A. D. Edwards ◽  
J. S. Wyatt ◽  
D. T. Delpy ◽  
...  

Near-infrared spectroscopy was used to measure global cerebral blood flow and volume in 10 healthy adult volunteers. High- and low-cerebral blood flow compartments were detected with mean flows for all 10 subjects of 59 +/- 21 (SD) and 11 +/- 4 ml.100 g-1.min-1, respectively. The mean cerebral blood volume of the group was 2.85 +/- 0.97 ml/100 g. Analysis of spontaneous changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin demonstrated strong correlations between respiratory rate and the oscillation frequency of cerebral oxyhemoglobin concentration (r = 0.99) and arterial oxygen saturation (SaO2) (r = 0.99). An estimate of the mean cerebral oxygen saturation for all subjects averaged 59.4 +/- 12.4% when their mean SaO2 was 91.8 +/- 2.4% (equivalent to 67.6 +/- 13.8% at a normoxic SaO2 of 98%). These results demonstrate that near-infrared spectroscopy can be used as a noninvasive bedside technique for both qualitative and quantitative evaluation of cerebral hemodynamics and oxygenation in adults.


Sign in / Sign up

Export Citation Format

Share Document