scholarly journals Lagrangian Drifter to Identify Ocean Eddy Characteristics

Climate ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 137
Author(s):  
Peter C. Chu ◽  
Chenwu Fan

Deterministic–stochastic empirical mode decomposition (EMD) is used to obtain low-frequency (non-diffusive; i.e., background velocity) and high-frequency (diffusive; i.e., eddies) components from a Lagrangian drifter‘s trajectory. Eddy characteristics are determined from the time series of eddy trajectories from individual Lagrangian drifters such as eddy radius, eddy velocity, eddy Rossby number, and the eddy–current kinetic energy ratio. A long-term dataset of the Sound Fixing and Ranging (RAFOS) float time series obtained near the California coast by the Naval Postgraduate School from 1992 to 2004 at depth between 150 and 600 m is used as an example to demonstrate the capability of the deterministic–stochastic EMD.

Author(s):  
Peter C. Chu ◽  
Chenwu Fan

Deterministic-stochastic empirical mode decomposition (EMD) is used to obtain low-frequency (non-diffusive, i.e., background velocity) and high-frequency (diffusive, i.e., eddies) components from a Lagrangian drifter‘s trajectory. Eddy characteristics are determined from the time series of eddy trajectories from individual Lagrangian drifter such as the eddy radial scale, eddy velocity scale, eddy Rossby number, and eddy-background kinetic energy ratio. A long-term dataset of the SOund Fixing And Ranging float time series obtained near the California coast by the Naval Postgraduate School from 1992 to 2004 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) is used as an example to demonstrate the capability of the deterministic-stochastic EMD.


2020 ◽  
Author(s):  
Gunnar Lischeid

<p>Long-term memory in hydrological systems is usually ascribed to extensive catchment water storage that builds up in wet periods and empties in dry periods. Besides, additional memory effects can result from plants responding to changing boundary conditions, from swelling or shrinking of clayey soils, etc. However, another fundamental effect is widely ignored. The second law of thermodynamics is often understood as an argument that the effects of external disturbances of natural systems fade off in the long term, resulting in basically stationary systems. However, this falls short of the mark and ignores that the damping of external triggers depends on the frequency of the signal: High frequency signals are much more damped during propagation through the same medium compared to low-frequency signals. This holds for electro-magnetic waves as well as for pressure waves. For example, low-frequency ground-penetrating radar exhibits larger penetration depth compared to higher frequencies, although at the cost of spatial resolution. Music is not only less loud but sounds more muffled on the other side of a concrete wall due to the overproportional loss of higher frequencies. The same holds, e.g., for time series of soil matrix potential or groundwater head that are nothing but irregular pressure waves. Consequently, the high frequency part of the signal of infiltrating rain or snowmelt is much more efficiently attenuated in the vadose zone, resulting in increasingly more smooth time series at greater depth. The low-frequency part of the signal is attenuated as well, but to a lesser degree. Thus, in the long-term only low-frequency signals remain, in some cases exhibiting period lengths of decades and more, which are often mistaken as trends, without any corresponding low-frequency input signal. As much of the catchment hydrology research has been done in small catchments and for shallow groundwater systems, and mostly based on short time series, these effects have been widely and systematically underrated so far. However, at larger spatial and temporal scales they become more evident and need more attention. Often power spectrum analysis is used to assess these effects. Another and even more efficient approach especially for complex systems is provided by principal component analysis of sets of hydrological time series. Some examples will be shown from a lowland region in Northeast Germany with extensive groundwater storage.</p>


Author(s):  
Nick Perham ◽  
Toni Howell ◽  
Andy Watt

AbstractFunding to support students with dyslexia in post-compulsory education is under pressure and more efficient assessments may offset some of this shortfall. We tested potential tasks for screening dyslexia: recall of adjective-noun, compared to noun-adjective, pairings (syntax) and recall of high versus low frequency letter pairings (bigrams). Students who reported themselves as dyslexic failed to show a normal syntax effect (greater recall of adjective-noun compared to noun-adjective pairings) and no significant difference in recall between the two types of bigrams whereas students who were not dyslexic showed the syntax effect and a bias towards recalling high frequency bigrams. Findings are consistent with recent explanations of dyslexia suggesting that those affected find it difficult to learn and utilise sequential long-term order information (Szmalec et al. Journal of Experimental Psychology: Learning, Memory & Cognition, 37(5) ,1270-1279, 2011). Further, ROC curve analyses revealed both tasks showed acceptable diagnostic properties as they were able to discriminate between the two groups of participants.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4136 ◽  
Author(s):  
Sang Ho Choi ◽  
Heenam Yoon ◽  
Hyung Won Jin ◽  
Hyun Bin Kwon ◽  
Seong Min Oh ◽  
...  

Sleep plays a primary function for health and sustains physical and cognitive performance. Although various stimulation systems for enhancing sleep have been developed, they are difficult to use on a long-term basis. This paper proposes a novel stimulation system and confirms its feasibility for sleep. Specifically, in this study, a closed-loop vibration stimulation system that detects the heart rate (HR) and applies −n% stimulus beats per minute (BPM) computed on the basis of the previous 5 min of HR data was developed. Ten subjects participated in the evaluation experiment, in which they took a nap for approximately 90 min. The experiment comprised one baseline and three stimulation conditions. HR variability analysis showed that the normalized low frequency (LF) and LF/high frequency (HF) parameters significantly decreased compared to the baseline condition, while the normalized HF parameter significantly increased under the −3% stimulation condition. In addition, the HR density around the stimulus BPM significantly increased under the −3% stimulation condition. The results confirm that the proposed stimulation system could influence heart rhythm and stabilize the autonomic nervous system. This study thus provides a new stimulation approach to enhance the quality of sleep and has the potential for enhancing health levels through sleep manipulation.


2000 ◽  
Vol 83 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Kazuyuki Murase

We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist,dl-2-amino-5-phosphonovaleric acid (AP5; 30 μM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 μM) and strychnine (3 μM), and also in a low Cl−solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2–1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 694 ◽  
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Shuguo Pan ◽  
Rui Shang

Real-time dynamic displacement and spectral response on the midspan of Jiangyin Bridge were calculated using Global Navigation Satellite System (GNSS) and a speedometer for the purpose of understanding the dynamic behavior and the temporal evolution of the bridge structure. Considering that the GNSS measurement noise is large and the velocity/acceleration sensors cannot measure the low-frequency displacement, the Variational Mode Decomposition (VMD) algorithm was used to extract the low-frequency displacement of GNSS. Then, the low-frequency displacement extracted from the GNSS time series and the high-frequency vibration calculated by speedometer were combined in this paper in order to obtain the high precision three-dimensional dynamic displacement of the bridge in real time. Simulation experiment and measured data show that the VMD algorithm could effectively resist the modal aliasing caused by noise and discontinuous signals compared with the commonly used Empirical Mode Decomposition (EMD) algorithm, which is guaranteed to get high-precision fusion data. Finally, the fused displacement results can identify high-frequency vibrations and low-frequency displacements of a mm level, which can be used to calculate the spectral characteristics of the bridge and provide reference to evaluate the dynamic and static loads, and the health status of the bridge in the full frequency domain and the full time domain.


2005 ◽  
Vol 12 (4) ◽  
pp. 451-460 ◽  
Author(s):  
A. R. Tomé ◽  
P. M. A. Miranda

Abstract. This paper presents a recent methodology developed for the analysis of the slow evolution of geophysical time series. The method is based on least-squares fitting of continuous line segments to the data, subject to flexible conditions, and is able to objectively locate the times of significant change in the series tendencies. The time distribution of these breakpoints may be an important set of parameters for the analysis of the long term evolution of some geophysical data, simplifying the intercomparison between datasets and offering a new way for the analysis of time varying spatially distributed data. Several application examples, using data that is important in the context of global warming studies, are presented and briefly discussed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Gang Zhang ◽  
Hongchi Liu ◽  
Pingli Li ◽  
Meng Li ◽  
Qiang He ◽  
...  

Power system load forecasting is an important part of power system scheduling. Since the power system load is easily affected by environmental factors such as weather and time, it has high volatility and multi-frequency. In order to improve the prediction accuracy, this paper proposes a load forecasting method based on variational mode decomposition (VMD) and feature correlation analysis. Firstly, the original load sequence is decomposed using VMD to obtain a series of intrinsic mode function (IMF), it is referred to below as a modal component, and they are divided into high frequency, intermediate frequency, and low frequency signals according to their fluctuation characteristics. Then, the feature information related to the power system load change is collected, and the correlation between each IMF and each feature information is analyzed using the maximum relevance minimum redundancy (mRMR) based on the mutual information to obtain the best feature set of each IMF. Finally, each component is input into the prediction model together with its feature set, in which back propagation neural network (BPNN) is used to predict high-frequency components, least square-support vector machine (LS-SVM) is used to predict intermediate and low frequency components, and BPNN is also used to integrate the prediction results to obtain the final load prediction value, and compare the prediction results of method in this paper with that of the prediction models such as autoregressive moving average model (ARMA), LS-SVM, BPNN, empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and VMD. This paper carries out an example analysis based on the data of Xi’an Power Grid Corporation, and the results show that the prediction accuracy of method in this paper is higher.


2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


Sign in / Sign up

Export Citation Format

Share Document