scholarly journals Prostate Magnetic Resonance Imaging Analyses, Clinical Parameters, and Preoperative Nomograms in the Prediction of Extraprostatic Extension

2021 ◽  
Vol 11 (4) ◽  
pp. 763-775
Author(s):  
Natalia Majchrzak ◽  
Piotr Cieśliński ◽  
Maciej Głyda ◽  
Katarzyna Karmelita-Katulska

Introduction: Proper planning of laparoscopic radical prostatectomy (RP) in patients with prostate cancer (PCa) is crucial to achieving good oncological results with the possibility of preserving potency and continence. Aim: The aim of this study was to identify the radiological and clinical parameters that can predict the risk of extraprostatic extension (EPE) for a specific site of the prostate. Predictive models and multiparametric magnetic resonance imaging (mpMRI) data from patients qualified for RP were compared. Material and methods: The study included 61 patients who underwent laparoscopic RP. mpMRI preceded transrectal systematic and cognitive fusion biopsy. Martini, Memorial Sloan-Kettering Cancer Center (MSKCC), and Partin Tables nomograms were used to assess the risk of EPE. The area under the curve (AUC) was calculated for the models and compared. Univariate and multivariate logistic regression analyses were used to determine the combination of variables that best predicted EPE risk based on final histopathology. Results: The combination of mpMRI indicating or suspecting EPE (odds ratio (OR) = 7.49 (2.31–24.27), p < 0.001) and PSA ≥ 20 ng/mL (OR = 12.06 (1.1–132.15), p = 0.04) best predicted the risk of EPE for a specific side of the prostate. For the prediction of ipsilateral EPE risk, the AUC for Martini’s nomogram vs. mpMRI was 0.73 (p < 0.001) vs. 0.63 (p = 0.005), respectively (p = 0.131). The assessment of a non-specific site of EPE by MSKCC vs. Partin Tables showed AUC values of 0.71 (p = 0.007) vs. 0.63 (p = 0.074), respectively (p = 0.211). Conclusions: The combined use of mpMRI, the results of the systematic and targeted biopsy, and prostate-specific antigen baseline can effectively predict ipsilateral EPE (pT3 stage).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nils Gumpfer ◽  
Dimitri Grün ◽  
Jennifer Hannig ◽  
Till Keller ◽  
Michael Guckert

AbstractIschaemic heart disease is among the most frequent causes of death. Early detection of myocardial pathologies can increase the benefit of therapy and reduce the number of lethal cases. Presence of myocardial scar is an indicator for developing ischaemic heart disease and can be detected with high diagnostic precision by magnetic resonance imaging. However, magnetic resonance imaging scanners are expensive and of limited availability. It is known that presence of myocardial scar has an impact on the well-established, reasonably low cost, and almost ubiquitously available electrocardiogram. However, this impact is non-specific and often hard to detect by a physician. We present an artificial intelligence based approach — namely a deep learning model — for the prediction of myocardial scar based on an electrocardiogram and additional clinical parameters. The model was trained and evaluated by applying 6-fold cross-validation to a dataset of 12-lead electrocardiogram time series together with clinical parameters. The proposed model for predicting the presence of scar tissue achieved an area under the curve score, sensitivity, specificity, and accuracy of 0.89, 70.0, 84.3, and 78.0%, respectively. This promisingly high diagnostic precision of our electrocardiogram-based deep learning models for myocardial scar detection may support a novel, comprehensible screening method.


2021 ◽  
Vol 11 ◽  
Author(s):  
Junxiao Liu ◽  
Shuanbao Yu ◽  
Biao Dong ◽  
Guodong Hong ◽  
Jin Tao ◽  
...  

PurposeThe clinical utility of multiparametric magnetic resonance imaging (mpMRI) for the detection and localization of prostate cancer (PCa) has been evaluated and validated. However, the implementation of mpMRI into the clinical practice remains some burden of cost and availability for patients and society. We aimed to predict the results of prostate mpMRI using the clinical parameters and multivariable model to reduce unnecessary mpMRI scans.MethodsWe retrospectively identified 784 men who underwent mpMRI scans and subsequent prostate biopsy between 2016 and 2020 according to the inclusion criterion. The cohort was split into a training cohort of 548 (70%) patients and a validation cohort of 236 (30%) patients. Clinical parameters including age, prostate-specific antigen (PSA) derivates, and prostate volume (PV) were assessed as the predictors of mpMRI results. The mpMRI results were divided into groups according to the reports: “negative”, “equivocal”, and “suspicious” for the presence of PCa.ResultsUnivariate analysis showed that the total PSA (tPSA), free PSA (fPSA), PV, and PSA density (PSAD) were significant predictors for suspicious mpMRI (P &lt; 0.05). The PSAD (AUC = 0.77) and tPSA (AUC = 0.74) outperformed fPSA (AUC = 0.68) and PV (AUC = 0.62) in the prediction of the mpMRI results. The multivariate model (AUC = 0.80) had a similar diagnostic accuracy with PSAD (P = 0.108), while higher than tPSA (P = 0.024) in predicting the mpMRI results. The multivariate model illustrated a better calibration and substantial improvement in the decision curve analysis (DCA) at a threshold above 20%. Using the PSAD with a 0.13 ng/ml2 cut-off could spare the number of mpMRI scans by 20%, keeping a 90% sensitivity in the prediction of suspicious MRI-PCa and missing three (3/73, 4%) clinically significant PCa cases. At the same sensitivity level, the multivariate model with a 32% cut-off could spare the number of mpMRI scans by 27%, missing only one (1/73, 1%) clinically significant PCa case.ConclusionOur multivariate model could reduce the number of unnecessary mpMRI scans without comprising the diagnostic ability of clinically significant PCa. Further prospective validation is required.


Sign in / Sign up

Export Citation Format

Share Document