scholarly journals Corrosion Resistance of Multilayer Coatings Deposited by PVD on Inconel 718 Using Electrochemical Impedance Spectroscopy Technique

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 521 ◽  
Author(s):  
Citlalli Gaona-Tiburcio ◽  
Marvin Montoya-Rangel ◽  
José A. Cabral-Miramontes ◽  
Francisco Estupiñan-López ◽  
Patricia Zambrano-Robledo ◽  
...  

AlCrN/TiSi, AlCrN/TiCrSiN and AlCrN/AlCrN + CrN coatings were deposited on Inconel 718 alloy by physical vapour deposition (PVD). The corrosion behaviour of uncoated and coated specimens was evaluated using electrochemical impedance spectroscopy (EIS) at open circuit potential in a 3.5 wt.% NaCl and 2 wt.% H2SO4 solutions. The EIS data acquired were curve fitted and analysed by equivalent circuit models to calculate the pore resistance, the charge transfer resistance and the capacitance. The Nyquist diagrams of all systems showed one part of the semicircle which could relate that reaction is a one step process, except for the AlCrN/TiCrSiN and AlCrN/AlCrN + CrN coatings in H2SO4 solution, for which two semicircles related to active corrosion in substrate alloy were found. However, from the Bode plots, it was possible to identify two the time constants for all systems exposed to NaCl and H2SO4 solutions. According to electrochemical results, the corrosion resistance of the AlCrN/TiSiN coating was better in the NaCl solution, whereas the AlCrN/AlCrN + CrN coating show better performance in the Sulphuric Acid solutions.

2008 ◽  
Vol 396-398 ◽  
pp. 393-396 ◽  
Author(s):  
D. Ionita ◽  
Doina Raducanu ◽  
Mariana Prodana ◽  
Ioana Demetrescu

The paper is an electrochemical study regarding the influence of different acid etching conditions on the corrosion behaviour of a new Ti based bioalloy with Nb, Ta and Zr. Open circuit, potentiodynamic and electrochemical impedance spectroscopy were the methods performed in a simulated body fluid (SBF) and a stability mechanism was discussed in terms of equivalent circuits.


2011 ◽  
Vol 105-107 ◽  
pp. 1797-1800
Author(s):  
Yu Ye Xu ◽  
Bi Lan Lin

Electrochemical impedance spectroscopy (EIS) technique was used to investigate the corrosion behavior of HRB400 reinforcing steel in Simulated Concrete Pore (SCP) solutions differently contaminated by bicarbonate ions and/or chloride ions. The corrosion kinetics parameters of the capacitance Y0-CPEdl, surface roughness n0-CPEdl and charge transfer resistance Rct of the electric double-layer capacitance of the interface of solution/HRB400 were analyzed and were compared to those of HPB235 reinforcing steel. The results show that the corrosion resistance index of HRB400 and HPB235 is increased with an increase in NaCl content to 0.1%, but that is decreased markedly for a larger NaCl content; and that of them is decreased largely with an increase in pH; the decrease extent of the corrosion resistance index of HRB400 with NaCl or pH is larger than that of HPB235; and the corrosion resistance of HRB400 is inferior to that of HPB235.


2021 ◽  
Author(s):  
Duduzile Nkomo ◽  
Nomsombuluko Masia

Corrosion resistance is an important requirement in the study of biomedical implants. Implant surface can be modified to provide good adherence and/or optimum biocompatibility with the human body at the bone-implant interface. Titanium alloys are typically used because of their excellent corrosion resistance and biocompatibility. However, to improve these properties, the alloy surface is roughened using alumina (Al2O3). More details on the corrosion resistance of these alloys can be obtained by using electrochemical impedance spectroscopy (EIS) method. EIS is the most suitable method for monitoring corrosion rate values due to its reproducibility, it is non-destructive and has reliable determination of small corrosion rates, much lower than those measured by other techniques. It can also study high-impedance systems, such as coatings and linings, high-purity water, and organic coating/metal systems or corrosion in a low-conductive solution. This method has been used to evaluate electrochemical properties of modified surfaces. This chapter will explore the effectiveness of EIS in studying the corrosion behaviour of machined and surface-modified Pure Ti grade 4 for dental implant applications. The basic EIS concepts are discussed and their derivation thereof to provide information about the corrosion resistance of biomedical implants is explored.


2021 ◽  
Vol 58 (2) ◽  
pp. 64-78
Author(s):  
R. Kalnina ◽  
V. Priednieks ◽  
K. Lukins ◽  
A. Gasparjans ◽  
A. Rijkure

Abstract The electrochemical impedance spectroscopy (EIS) and corrosion behaviour of physical vapour deposited (PVD) TiAlN and TiCN coatings of 50 µm mesh shaped AISI 316 stainless steel were estimated under simulated marine conditions (3.5 wt. % NaCl solution). The coatings were prepared by creating adhesive Cr-CrN interlayer with the thickness of about 0.3 µm. The obtained thicknesses of produced coatings were measured to be in a range between 2 and 3.5 µm. The presence of protective coatings leads to corrosion potential (Ecorr ) shifting to more positive values as compared to the bare stainless steel. This effect indicates higher protection efficiency of coated steel under marine conditions. The protective behaviour of produced coating leads to the decreased corrosion current density (jcorr ) by indicating up to 40-fold higher polarization resistance as compared to resistance of the naturally formed oxide layer over the stainless steel. The Nyquist and Bode plots were obtained with the help of EIS measurements by applying alternating potential amplitude of 10 mV on observed Ecorr . The obtained plots were fitted by appropriate equivalent circuits to calculate pore resistance, charge transfer resistance and capacitance. The present study reveals that pore resistance was the highest in the case of TiCN coating (Rpore =3.22 kΩ·cm2). The increase in duration of the immersion up to 24 h leads to change in the capacitive behaviour of the coatings caused by the penetration of the aqueous solution into pore system of TiCN coating with low wettability and surface passivation of reactive TiAlN coating. The presence of defects was confirmed by examining the obtained samples with the help of the scanning electron microscope.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
Juan Bosch ◽  
David M. Bastidas

The protection of mild steel by modified epoxy coating containing colophony microencapsulated corrosion inhibitors was investigated in this study. The corrosion behavior of these epoxy coatings containing colophony microcapsules was studied by electrochemical analysis using cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. The microcapsule coating showed decreased corrosion current densities of 2.75 × 10−8 and 3.21 × 10−8 A/cm2 along with corrosion potential values of 0.349 and 0.392 VSCE for simulated concrete pore solution and deionized water with 3.5 wt.% NaCl, respectively, indicating improved corrosion protection in both alkaline and neutral pH. Electrochemical impedance spectroscopy analysis also showed charge transfer resistance values over one order of magnitude higher than the control sample, corroborating the electrochemical corrosion potential and current density testing results. Overall, the use of colophony microcapsules showed improved corrosion protection in simulated concrete pore solution and DI water solutions containing chloride ions.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 788
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

Aggregation of amyloid-β (aβ) peptides into toxic oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer’s disease (AD) and is the primary focus of AD diagnostics. Disaggregation or elimination of toxic aβ aggregates in patients is important for delaying the progression of neurodegenerative disorders in AD. Recently, 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was introduced as a chemical agent that binds with toxic aβ aggregates and transforms them into monomers to reduce the negative effects of aβ aggregates in the brain. However, the mechanism of aβ disaggregation by EPPS has not yet been completely clarified. In this study, an electrochemical impedimetric immunosensor for aβ diagnostics was developed by immobilizing a specific anti-amyloid-β (aβ) antibody onto a self-assembled monolayer functionalized with a new interdigitated chain-shaped electrode (anti-aβ/SAM/ICE). To investigate the ability of EPPS in recognizing AD by extricating aβ aggregation, commercially available aβ aggregates (aβagg) were used. Electrochemical impedance spectroscopy was used to probe the changes in charge transfer resistance (Rct) of the immunosensor after the specific binding of biosensor with aβagg. The subsequent incubation of the aβagg complex with a specific concentration of EPPS at different time intervals divulged AD progression. The decline in the Rct of the immunosensor started at 10 min of EPPS incubation and continued to decrease gradually from 20 min, indicating that the accumulation of aβagg on the surface of the anti-aβ/SAM/ICE sensor has been extricated. Here, the kinetic disaggregation rate k value of aβagg was found to be 0.038. This innovative study using electrochemical measurement to investigate the mechanism of aβagg disaggregation by EPPS could provide a new perspective in monitoring the disaggregation periods of aβagg from oligomeric to monomeric form, and then support for the prediction and handling AD symptoms at different stages after treatment by a drug, EPPS.


2014 ◽  
Vol 789 ◽  
pp. 495-500
Author(s):  
Bing Ying Wang ◽  
Qing Hao Shi ◽  
Wen Long Zhang

The polyurea was modified by adding different amounts of nanometer ZnO. The corrosion behavior of polyurea/primer composite coating system in wet-dry cyclic environment of 3.5% NaCl solution was studied by using the Electrochemical Impedance Spectroscopy (EIS) measurement and adhesion test technology. The experimental result showed that, different mass fractions of nanometer ZnO had different influences on the corrosion resistance property of coating. When the mass fraction of nanometer ZnO was 5%, the composite coating had the largest protective action. The corrosion resistance property of nanometer ZnO can be improved by increasing the density of polyurea coating, however, the corrosion resistance property of polyurea coating will be weakened in case of exceeding the critical adding amount.


Sign in / Sign up

Export Citation Format

Share Document