scholarly journals Chemical-Reactivity Properties, Drug Likeness, and Bioactivity Scores of Seragamides A–F Anticancer Marine Peptides: Conceptual Density Functional Theory Viewpoint

Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 52 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A methodology based on concepts that arose from Density Functional Theory (CDFT) was chosen for the calculation of global and local reactivity descriptors of the Seragamide family of marine anticancer peptides. Determination of active sites for the molecules was achieved by resorting to some descriptors within Molecular Electron Density Theory (MEDT) such as Fukui functions. The pKas of the six studied peptides were established using a proposed relationship between this property and calculated chemical hardness. The drug likenesses and bioactivity properties of the peptides considered in this study were obtained by resorting to a homology model by comparison with the bioactivity of related molecules in their interaction with different receptors. With the object of analyzing the concept of drug repurposing, a study of potential AGE-inhibition abilities of Seragamides peptides was pursued by comparison with well-known drugs that are already available as pharmaceuticals.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A methodology based on the concepts that arise from Density Functional Theory named Conceptual Density Functional Theory (CDFT) was chosen for the calculation of some global and local reactivity descriptors of the Discodermins A-H family of marine peptides through the consideration of the KID (Koopmans in DFT) technique that was successfully used in previous studies of this kind of molecular systems. The determination of active sites of the studied molecules for different kind of reactivities was achieved by resorting to some CDFT-based descriptors like the Fukui functions as well as the Parr functions derived from Molecular Electron Density Theory (MEDT). A few properties identified with their ability to behave as a drug and the bioactivity of the peptides considered in this examination were acquired by depending on a homology model by studying the correlation with the known bioactivity of related molecules in their interaction with various biological receptors. With the further object of analyzing their bioactivity some parameters of usefulness for future QSAR studies, their predicted biological targets and the the ADME (Absorption, Distribution, Metabolism, and Excretion) parameters related to the Discodermins A-H pharmacokinetics are also reported.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4158
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A methodology based on the concepts that arise from Density Functional Theory named Conceptual Density Functional Theory (CDFT) was chosen for the calculation of some global and local reactivity descriptors of the Discodermins A–H family of marine peptides through the consideration of the KID (Koopmans in DFT) technique that was successfully used in previous studies of this kind of molecular systems. The determination of active sites of the studied molecules for different kinds of reactivities was achieved by resorting to some CDFT-based descriptors like the Fukui functions as well as the Parr functions derived from Molecular Electron Density Theory (MEDT). A few properties identified with their ability to behave as a drug and the bioactivity of the peptides considered in this examination were acquired by depending on a homology model by studying the correlation with the known bioactivity of related molecules in their interaction with various biological receptors. With the further object of analyzing their bioactivity, some parameters of usefulness for future QSAR studies, their predicted biological targets, and the ADME (Absorption, Distribution, Metabolism, and Excretion) parameters related to the Discodermins A–H pharmacokinetics are also reported.


2019 ◽  
Vol 17 (1) ◽  
pp. 1133-1139 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

AbstractThe chemical structures and molecular reactivities of the Amatoxin group of fungi-derived peptides have been determined by means of the consideration of a model chemistry that has been previously validated as well-behaved for our purposes. The reactivity descriptors were calculated on the basis of a methodological framework built around the concepts that are the outcome of the so called Conceptual Density Functional Theory (CDFT). This procedure in connection with the different Fukui functions allowed to identify the chemically active regions within the molecules. By considering a simple protocol designed by our research group for the estimation of the pKa of peptides through the information coming from the chemical hardness, these property has been established for the different molecular systems explored in this research. The information reported through this work could be of interest for medicinal chemistry researchers in using this knowledge for the design of new medicines based on the studied peptides or as a help for the understanding of the toxicity mechanisms exerted by them.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2707 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Virotoxins are monocyclic peptides formed by at least five different compounds: alaviroidin, viroisin, deoxoviroisin, viroidin and deoxovirodin. These are toxic peptides singularly found in Amanita virosa mushrooms. Here we perform computational studies on the structural and electronic conformations of these peptides using the MN12SX/Def2TZVP/H2O chemistry model to investigate their chemical reactivity. CDFT-based descriptors (for Conceptual Density Functional Theory) (e.g., Parr functions and Nucleophilicity) are also considered. At the same time, other properties (e.g., pKas) will be determined and used to study virotoxins solubility and to inform decisions about repurposing these agents in medicinal chemistry.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Juan Frau ◽  
Daniel Glossman-Mitnik

This study evaluated a fixed long-range corrected range-separated hybrid (RSH) density functional associated with the Def2TZVP basis set alongside the SMD solvation model for the computation of the structure, molecular properties, and chemical reactivity of the M8 intermediate melanoidin pigment in the presence of water and dioxane. The preference of the active sites pertinent to radical, nucleophilic, and electrophilic attacks is made through linking them with the electrophilic and nucleophilic Parr functions, Fukui function indices, and condensed dual descriptor which are chemical reactivity descriptors that arise from conceptual density functional theory. The study confirmed the results from previous works showing that the MN12SX density functional is the most appropriate in predicting the chemical reactivity of this molecule in both solvents.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2020 ◽  
Vol 18 (1) ◽  
pp. 857-873
Author(s):  
Kornelia Czaja ◽  
Jacek Kujawski ◽  
Radosław Kujawski ◽  
Marek K. Bernard

AbstractUsing the density functional theory (DFT) formalism, we have investigated the properties of some arylsulphonyl indazole derivatives that we studied previously for their biological activity and susceptibility to interactions of azoles. This study includes the following physicochemical properties of these derivatives: electronegativity and polarisability (Mulliken charges, adjusted charge partitioning, and iterative-adjusted charge partitioning approaches); free energy of solvation (solvation model based on density model and M062X functional); highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap together with the corresponding condensed Fukui functions, time-dependent DFT along with the UV spectra simulations using B3LYP, CAM-B3LYP, MPW1PW91, and WB97XD functionals, as well as linear response polarisable continuum model; and estimation of global chemical reactivity descriptors, particularly the chemical hardness factor. The charges on pyrrolic and pyridinic nitrogen (the latter one in the quinolone ring of compound 8, as well as condensed Fukui functions) reveal a significant role of these atoms in potential interactions of azole ligand–protein binding pocket. The lowest negative value of free energy of solvation can be attributed to carbazole 6, whereas pyrazole 7 has the least negative value of this energy. Moreover, the HOMO–LUMO gap and chemical hardness show that carbazole 6 and indole 5 exist as soft molecules, while fused pyrazole 7 has hard character.


Author(s):  
Sudip Pan ◽  
Ashutosh Gupta ◽  
Venkatesan Subramanian ◽  
Pratim K. Chattaraj

Developing effective structure-activity/property/toxicity relationships (QSAR/QSPR/QSTR) is very helpful in predicting biological activity, property, and toxicity of a given set of molecules. Regular change in these properties with the structural alteration is the main reason to obtain QSAR/QSPR/QSTR models. The advancement in making different QSAR/QSPR/QSTR models to describe activity, property, and toxicity of various groups of molecules is reviewed in this chapter. The successful implementation of Conceptual Density Functional Theory (CDFT)-based global as well as local reactivity descriptors in modeling effective QSAR/QSPR/QSTR is highlighted.


Sign in / Sign up

Export Citation Format

Share Document