scholarly journals Density Functional Theory and Molecular Docking Investigations of the Chemical and Antibacterial Activities for 1-(4-Hydroxyphenyl)-3-phenylprop-2-en-1-one

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).

2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


2019 ◽  
Vol 32 (2) ◽  
pp. 401-407
Author(s):  
M. Dinesh Kumar ◽  
P. Rajesh ◽  
R. Priya Dharsini ◽  
M. Ezhil Inban

The quantum chemical calculations of organic compounds viz. (E)-1-(2,6-bis(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenyl-hydrazine (3ECl), (E)-1-(2,6-bis(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl) and (E)-1-(2,6-bis(4-chloro-phenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) have been performed by density functional theory (DFT) using B3LYP method with 6-311G (d,p) basis set. The electronic properties such as Frontier orbital and band gap energies have been calculated using DFT. Global reactivity descriptor has been computed to predict chemical stability and reactivity of the molecule. The chemical reactivity sites of compounds were predicted by mapping molecular electrostatic potential (MEP) surface over optimized geometries and comparing these with MEP map generated over crystal structures. The charge distribution of molecules predict by using Mulliken atomic charges. The non-linear optical property was predicted and interpreted the dipole moment (μ), polarizability (α) and hyperpolarizability (β) by using density functional theory.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


2013 ◽  
Vol 12 (03) ◽  
pp. 1350013 ◽  
Author(s):  
FRANCISCO CERVANTES-NAVARRO ◽  
DANIEL GLOSSMAN-MITNIK

This theoretical work applied density functional theory (DFT) to study the ground state of the indigo molecule and the effects of substituents. B3LYP was employed with the 6-31G[d,p] basis set. The obtained energies were used to describe the local reactivity [Δf(r)]. The effects of the substituents on the local reactivity were dependent on the molecular positions of the substituents.


2020 ◽  
Vol 21 (4) ◽  
pp. 1253 ◽  
Author(s):  
Mohamed E. Elshakre ◽  
Mahmoud A. Noamaan ◽  
Hussein Moustafa ◽  
Haider Butt

In this work, three computational methods (Hatree-Fock (HF), Møller–Plesset 2 (MP2), and Density Functional Theory (DFT)) using a variety of basis sets are used to determine the atomic and molecular properties of dihydrothiouracil-based indenopyridopyrimidine (TUDHIPP) derivatives. Reactivity descriptors of this system, including chemical potential (µ), chemical hardness (η), electrophilicity (ω), condensed Fukui function and dual descriptors are calculated at B3LYP/6-311++ G (d,p) to identify reactivity changes of these molecules in both gas and aqueous phases. We determined the molecular electrostatic surface potential (MESP) to determine the most active site in these molecules. Molecular docking study of TUDHIPP with topoisomerase II α and β is performed, predicting binding sites and binding energies with amino acids of both proteins. Docking studies of TUDHIPP versus etoposide suggest their potential as antitumor candidates. We have applied Lipinski, Veber’s rules and analysis of the Golden triangle and structure activity/property relationship for a series of TUDHIPP derivatives indicate that the proposed compounds exhibit good oral bioavailability. The comparison of the drug likeness descriptors of TUDHIPP with those of etoposide, which is known to be an antitumor drug, indicates that TUDHIPP can be considered as an antitumor drug. The overall study indicates that TUDHIPP has comparable and even better descriptors than etoposide proposing that it can be as effective antitumor drug, especially 2H, 6H and 7H compounds.


Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 52 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A methodology based on concepts that arose from Density Functional Theory (CDFT) was chosen for the calculation of global and local reactivity descriptors of the Seragamide family of marine anticancer peptides. Determination of active sites for the molecules was achieved by resorting to some descriptors within Molecular Electron Density Theory (MEDT) such as Fukui functions. The pKas of the six studied peptides were established using a proposed relationship between this property and calculated chemical hardness. The drug likenesses and bioactivity properties of the peptides considered in this study were obtained by resorting to a homology model by comparison with the bioactivity of related molecules in their interaction with different receptors. With the object of analyzing the concept of drug repurposing, a study of potential AGE-inhibition abilities of Seragamides peptides was pursued by comparison with well-known drugs that are already available as pharmaceuticals.


2018 ◽  
Vol 16 (1) ◽  
pp. 653-666
Author(s):  
Maha S. Almutairi ◽  
S. Soumya ◽  
Reem I. Al-Wabli ◽  
I. Hubert Joe ◽  
Mohamed I. Attia

AbstractVibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin- 4-yl)ethyl]sulfanyl}pyrimidin-4-(3H)-one.The equilibrium structural geometry, various bonding features and harmonic vibrational wavenumbers of the title compound have been investigated using DFT-B3LYP function at 6-311++G(d, p) basis set. The detailed interpretations of the vibrational spectra have been carried out with the aid of VEDA 4 program. The various intramolecular interactions of the title compound have been exposed by natural bond orbital analysis. The FT-IR and FT-Raman spectra of the title molecule have been recorded and analyzed. Blue-shifting of the C-H wavenumber along with a decrease in the C-H bond length attribute for the formation of the C-H...O hydrogrn bonding provide an evidence for a charge transfer interaction. Also, the distribution of natural atomic charges reflects the presence of intramolecular hydrogen bonding. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and the low value of energy gap indicates electron transfer within the molecule. Moreover, molecular docking studies revealed the possible binding of the title molecule to different antimicrobial target proteins.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Juan Frau ◽  
Daniel Glossman-Mitnik

This study evaluated a fixed long-range corrected range-separated hybrid (RSH) density functional associated with the Def2TZVP basis set alongside the SMD solvation model for the computation of the structure, molecular properties, and chemical reactivity of the M8 intermediate melanoidin pigment in the presence of water and dioxane. The preference of the active sites pertinent to radical, nucleophilic, and electrophilic attacks is made through linking them with the electrophilic and nucleophilic Parr functions, Fukui function indices, and condensed dual descriptor which are chemical reactivity descriptors that arise from conceptual density functional theory. The study confirmed the results from previous works showing that the MN12SX density functional is the most appropriate in predicting the chemical reactivity of this molecule in both solvents.


Sign in / Sign up

Export Citation Format

Share Document