scholarly journals Hidden Link Prediction in Criminal Networks Using the Deep Reinforcement Learning Technique

Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Marcus Lim ◽  
Azween Abdullah ◽  
NZ Jhanjhi ◽  
Mahadevan Supramaniam

Criminal network activities, which are usually secret and stealthy, present certain difficulties in conducting criminal network analysis (CNA) because of the lack of complete datasets. The collection of criminal activities data in these networks tends to be incomplete and inconsistent, which is reflected structurally in the criminal network in the form of missing nodes (actors) and links (relationships). Criminal networks are commonly analyzed using social network analysis (SNA) models. Most machine learning techniques that rely on the metrics of SNA models in the development of hidden or missing link prediction models utilize supervised learning. However, supervised learning usually requires the availability of a large dataset to train the link prediction model in order to achieve an optimum performance level. Therefore, this research is conducted to explore the application of deep reinforcement learning (DRL) in developing a criminal network hidden links prediction model from the reconstruction of a corrupted criminal network dataset. The experiment conducted on the model indicates that the dataset generated by the DRL model through self-play or self-simulation can be used to train the link prediction model. The DRL link prediction model exhibits a better performance than a conventional supervised machine learning technique, such as the gradient boosting machine (GBM) trained with a relatively smaller domain dataset.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 16550-16559 ◽  
Author(s):  
Marcus Lim ◽  
Azween Abdullah ◽  
NZ Jhanjhi ◽  
Muhammad Khurram Khan

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 184797-184807 ◽  
Author(s):  
Marcus Lim ◽  
Azween Abdullah ◽  
N.Z. Jhanjhi ◽  
Muhammad Khurram Khan ◽  
Mahadevan Supramaniam

Improving the performance of link prediction is a significant role in the evaluation of social network. Link prediction is known as one of the primary purposes for recommended systems, bio information, and web. Most machine learning methods that depend on SNA model’s metrics use supervised learning to develop link prediction models. Supervised learning actually needed huge amount of data set to train the model of link prediction to obtain an optimal level of performance. In few years, Deep Reinforcement Learning (DRL) has achieved excellent success in various domain such as SNA. In this paper, we present the use of deep reinforcement learning (DRL) to improve the performance and accuracy of the model for the applied dataset. The experiment shows that the dataset created by the DRL model through self-play or auto-simulation can be utilized to improve the link prediction model. We have used three different datasets: JUNANES, MAMBO, JAKE. Experimental results show that the DRL proposed method provide accuracy of 85% for JUNANES, 87% for MAMABO, and 78% for JAKE dataset which outperforms the GBM next highest accuracy of 75% for JUNANES, 79% for MAMBO and 71% for JAKE dataset respectively trained with 2500 iteration and also in terms of AUC measures as well. The DRL model shows the better efficiency than a traditional machine learning strategy, such as, Random Forest and the gradient boosting machine (GBM).


Author(s):  
V.T Priyanga ◽  
J.P Sanjanasri ◽  
Vijay Krishna Menon ◽  
E.A Gopalakrishnan ◽  
K.P Soman

The widespread use of social media like Facebook, Twitter, Whatsapp, etc. has changed the way News is created and published; accessing news has become easy and inexpensive. However, the scale of usage and inability to moderate the content has made social media, a breeding ground for the circulation of fake news. Fake news is deliberately created either to increase the readership or disrupt the order in the society for political and commercial benefits. It is of paramount importance to identify and filter out fake news especially in democratic societies. Most existing methods for detecting fake news involve traditional supervised machine learning which has been quite ineffective. In this paper, we are analyzing word embedding features that can tell apart fake news from true news. We use the LIAR and ISOT data set. We churn out highly correlated news data from the entire data set by using cosine similarity and other such metrices, in order to distinguish their domains based on central topics. We then employ auto-encoders to detect and differentiate between true and fake news while also exploring their separability through network analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nasser Assery ◽  
Yuan (Dorothy) Xiaohong ◽  
Qu Xiuli ◽  
Roy Kaushik ◽  
Sultan Almalki

Purpose This study aims to propose an unsupervised learning model to evaluate the credibility of disaster-related Twitter data and present a performance comparison with commonly used supervised machine learning models. Design/methodology/approach First historical tweets on two recent hurricane events are collected via Twitter API. Then a credibility scoring system is implemented in which the tweet features are analyzed to give a credibility score and credibility label to the tweet. After that, supervised machine learning classification is implemented using various classification algorithms and their performances are compared. Findings The proposed unsupervised learning model could enhance the emergency response by providing a fast way to determine the credibility of disaster-related tweets. Additionally, the comparison of the supervised classification models reveals that the Random Forest classifier performs significantly better than the SVM and Logistic Regression classifiers in classifying the credibility of disaster-related tweets. Originality/value In this paper, an unsupervised 10-point scoring model is proposed to evaluate the tweets’ credibility based on the user-based and content-based features. This technique could be used to evaluate the credibility of disaster-related tweets on future hurricanes and would have the potential to enhance emergency response during critical events. The comparative study of different supervised learning methods has revealed effective supervised learning methods for evaluating the credibility of Tweeter data.


Author(s):  
Ali Fakhry

The applications of Deep Q-Networks are seen throughout the field of reinforcement learning, a large subsect of machine learning. Using a classic environment from OpenAI, CarRacing-v0, a 2D car racing environment, alongside a custom based modification of the environment, a DQN, Deep Q-Network, was created to solve both the classic and custom environments. The environments are tested using custom made CNN architectures and applying transfer learning from Resnet18. While DQNs were state of the art years ago, using it for CarRacing-v0 appears somewhat unappealing and not as effective as other reinforcement learning techniques. Overall, while the model did train and the agent learned various parts of the environment, attempting to reach the reward threshold for the environment with this reinforcement learning technique seems problematic and difficult as other techniques would be more useful.


Sign in / Sign up

Export Citation Format

Share Document