scholarly journals Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 503
Author(s):  
Éva Tichy-Rács ◽  
Ivo Romet ◽  
László Kovács ◽  
Krisztián Lengyel ◽  
Gábor Corradi ◽  
...  

The energy levels of Dy3+ ions have been determined in lithium yttrium borate (Li6Y(BO3)3) single crystals in a wide spectral range between 3000 and 40,000 cm−1 using optical absorption and luminescence spectroscopy, which also allow for an analysis of the ground state. The crystal field splittings of the 6H15/2 ground state and all excited states up to the 4F7/2 manifold were obtained at a low temperature, based on luminescence (T = 4.2–78 K) and absorption (T = 8–100 K) measurements, respectively. The numbers of experimentally observed Stark sublevels are in agreement with those expected theoretically for Dy3+ ions occupying a single low symmetry (C1) site.

1962 ◽  
Vol 40 (10) ◽  
pp. 1480-1489 ◽  
Author(s):  
J. W. Bichard ◽  
J. C. Giles

The optical absorption spectra of arsenic and phosphorus donor impurities in silicon have been studied under conditions of improved resolution. Absorption lines due to transitions from the impurity ground state to the excited states 2p0, 2p±, 3p0, 3p±, 4p0, 4 p±, and 5p0, and 5p± have been observed at 4.2° K. The relative intensities of some of these absorption lines are compared with existing experimental and theoretical estimates. The contribution of instrumental broadening to the observed line widths is assessed and natural line widths are estimated. The estimates indicate values for the natural line widths which are much less than those previously reported. For phosphorus impurity, the natural line widths are estimated to be less than 0.08 × 10−3 electron volts full width at half-maximum. The possibility of concentration broadening is discussed in connection with the arsenic data.


1974 ◽  
Vol 52 (18) ◽  
pp. 1759-1764 ◽  
Author(s):  
F. T. Hedgcock ◽  
S. Lenis ◽  
P. L. Li ◽  
J. O. Ström-Olsen ◽  
E. F. Wassermann

We have extended the low temperature magnetic anisotropy measurements on single crystals of zinc containing up to 600 p.p.m. manganese from magnetic fields of 9 to 56 kG. The crystal field splitting parameters determined at low magnetic fields also characterizes the magnetic anisotropy at high magnetic fields. Manganese–manganese interaction effects are observed in the magnetic anisotropy at manganese concentrations greater than 300 p.p.m. Low temperature magnetic anisotropy measurements on single crystals of zinc containing up to 164 p.p.m. chromium are reported and indicate a crystal field splitting of 0.16 K for the chromium ion.


2016 ◽  
Vol 94 (8) ◽  
pp. 705-711
Author(s):  
Wessameldin S. Abdelaziz

Energy levels of 249 excited levels in nickel-like erbium are calculated using the 3s23p63d10 as a ground state and the single electron excited states from n = 3 to n = 4, 5 orbitals, calculations have been performed using FAC code (Gu. Astrophys. J. 582, 1241 (2003). doi:10.1086/344745 ). The populations are calculated over electron densities from 1020 to 1023 cm−3 and electron temperatures 1/2, 3/4 of the ionization potential of Ni-like Er. The gain coefficients of the transitions are calculated.


2022 ◽  
Vol 130 (1) ◽  
pp. 59
Author(s):  
А.М. Кузьменко ◽  
В.Ю. Иванов ◽  
А.Ю. Тихановский ◽  
А.Г. Пименов ◽  
А.М. Шуваев ◽  
...  

Experimental and theoretical study of submillimeter (terahertz) spectroscopic and magnetic properties of the rare-earth aluminum borate HoAl3(BO3)4 were performed at temperatures 3–300 K. In the transmittance spectra a number of resonance lines were detected at frequencies 2–35 cm–1 for different radiation polarizations. These modes were identified as transitions between the lower levels of the ground multiplet of the Ho3+ ion split by the crystal field, including both transitions from the ground state to the excited ones and transitions between the excited states. The established excitation conditions of the observed modes and the simulation of the spectra made it possible to separate the magnetic and electric dipole transitions and to determine the energies of the corresponding states, their symmetry, and the matrix elements of the transitions. Low-frequency lines that do not fit into the established picture of the electron states of Ho3+ were also found; these lines, apparently, correspond to the ions with the distorted by defects local symmetry of the crystal field.


1997 ◽  
Vol 52 (5) ◽  
pp. 447-456
Author(s):  
Ingo Biertümpel ◽  
Hans-Herbert Schmidtke

Abstract Lifetime measurements down to nearly liquid helium temperatures are used for determining energy levels and transition rates between excited levels and relaxations into the ground state. Energies are obtained from temperature dependent lifetimes by fitting experimental curves to model functions pertinent for thermally activated processes. Rates are calculated from solutions of rate equations. Similar parameters for pure and doped Pt(IV) hexahalogeno complexes indicate that excited levels largely belong to molecular units. Some of the rates between excited states are only somewhat larger than decay rates into the ground state, which is a consequence of the polyexponential decay measured also at low temperature (2 K). In the series of halogen complexes, the rates between spinorbit levels resulting from 3T1g increase from fluorine to bromine, although energy splittings become larger. Due to the decreasing population of higher excited states in this series, K^PtFö shows a tri-exponential, K2PtCl6 a bi-exponential and FoPtBr6 a mono-exponential decay. In the latter case the population density of higher excited states relaxes so fast that emission occurs primarily from the lowest excited Γ3(3T1g) level. Phase transitions and emission from chromophores on different sites can also be observed.


Author(s):  
N. Mironova ◽  
V. Skvortsova ◽  
A. Kuzmin ◽  
I. Sildos ◽  
N. Zazubovich

2008 ◽  
Vol 64 (5) ◽  
pp. 534-549 ◽  
Author(s):  
Ryoko Makita ◽  
Kiyoaki Tanaka ◽  
Yoshichika Ōnuki

X-ray atomic orbital (XAO) analysis revealed that at both temperatures the electrons are transferred from B 2px (= py ) to Ce 5d and 4f orbitals. At 340 K 5d(j = 5/2)Γ8 orbitals are occupied partially, but 4f(j = 5/2)Γ8 orbitals are more populated than 4f(j = 5/2)Γ7 orbitals, in contrast to our observation at 430 K [Makita et al. (2007). Acta Cryst. B63, 683–692]. At 535 K the XAO analysis revealed clearly that the order of the energy levels of 4f(j = 5/2)Γ8 and Γ7 states reversed again and is the same as that at room temperature. It also limited the possible 5d configurations to three models among the nine possible ones. However, the XAO analysis could not decide which of the three models was the best with the present accuracy of the measurement. Two of them have partially and fully occupied 5d(j = 5/2)Γ7 orbitals and the remaining one has a fully occupied 5d(j = 3/2)Γ8 orbital. Since the lobes of 5d(j = 3/2)Γ8 or 5d(j = 5/2)Γ7 orbitals do not overlap with the 4f(j = 5/2)Γ8 orbitals as well as the 5d(j = 5/2)Γ8 orbitals, the order of the energy levels of the 4f(j = 5/2) orbitals became the same as that at room temperature. These results indicate that the crystal field varies with temperature due to the electron transfer from B 2p to Ce 5d orbitals. The difference densities after the spherical-atom refinement at the three temperatures clearly revealed the different combinations of 4f and 5d orbitals which are occupied. In the present study positive peaks due to the 4f electrons appear near the Ce nucleus and those due to 5d orbitals are found in the area outside the 4f peaks. Between the two areas there is a negative area distributed spherically at 340 K. The negative area produced by the contraction of 4f(j = 5/2)Γ8 orbitals seems to reduce the electron repulsion of the 5d(j = 5/2)Γ8 orbitals and helps the 4f(j = 5/2)Γ8 orbitals to remain as the ground state.


Sign in / Sign up

Export Citation Format

Share Document