scholarly journals Interplay of Active Stress and Driven Flow in Self-Assembled, Tumbling Active Nematics

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1071
Author(s):  
Weiqiang Wang ◽  
Rui Zhang

Lyotropic chromonic liquid crystals (LCLCs) are a special type of hierarchical material in which self-assembled molecular aggregates are responsible for the formation of liquid crystal phases. Thanks to its unusual material properties and bio compatibility, it has found wide applications including the formation of active nematic liquid crystals. Recent experiments have uncovered tumbling character of certain LCLCs. However, how tumbling behavior modifies structure and flow in driven and active nematics is poorly understood. Here, we rely on continuum simulation to study the interplay of extensile active stress and externally driven flow in a flow-tumbling nematic with a low twist modulus to mimic nematic LCLCs. We find that a spontaneous transverse flow can be developed in a flow-tumbling active nematic confined to a hybrid alignment cell when it is in log-rolling mode at sufficiently high activities. The orientation of the total spontaneous flow is tunable by tuning the active stress. We further show that activity can suppress pressure-driven flow of a flow-tumbling nematic in a planar-anchoring cell but can also promote a transition of the director field under a pressure gradient in a homeotropic-anchoring cell. Remarkably, we demonstrate that the frequency of unsteady director dynamics in a tumbling nematic under Couette flow is invariant against active stress when below a threshold activity but exhibits a discontinuous increase when above the threshold at which a complex, periodic spatiotemporal director pattern emerges. Taken together, our simulations reveal qualitative differences between flow-tumbling and flow-aligning active nematics and suggest potential applications of tumbling nematics in microfluidics.

2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


2021 ◽  
Author(s):  
Yoshito Tobe ◽  
Kazukuni Tahara ◽  
Steven De Feyter

Chirality in two-dimensions (2D) has attracted increasing attention with regard to interesting fundamental aspects as well as potential applications. This article reports several aspects of supramolecular chirality control as exemplified...


Author(s):  
Harrison T. Pajovich ◽  
Alexandra M. Brown ◽  
Andrew M. Smith ◽  
Sara K. Hurley ◽  
Jessica R. Dorilio ◽  
...  

In this work, for the first time, chlorogenic acid, a natural phytochemical, was conjugated to a lactoferrin derived antimicrobial peptide sequence RRWQWRMKKLG to develop a self-assembled template. To mimic the components of extracellular matrix, we then incorporated Type I Collagen, followed by a sequence of aggrecan peptide (ATEGQVRVNSIYQDKVSL) onto the self-assembled templates for potential applications in ligament tissue regeneration. Mechanical properties and surface roughness were studied and the scaffolds displayed a Young’s Modulus of 169 MP and an average roughness of 72 nm respectively. Thermal phase changes were studied by DSC analysis. Results showed short endothermic peaks due to water loss and an exothermic peak due to crystallization of the scaffold caused by rearrangement of the components. Biodegradability studies indicated a percent weight loss of 27.5 % over a period of 37 days. Furthermore, the scaffolds were found to adhere to fibroblasts, the main cellular component of ligament tissue. The scaffolds promoted cell proliferation and displayed actin stress fibers indicative of cell motility and attachment. Collagen and proteoglycan synthesis were also promoted, demonstrating increased expression and deposition of collagen and proteoglycans. Additionally, the scaffolds exhibited antimicrobial activity against Staphylococcus epidermis bacteria, which is beneficial for minimizing biofilm formation if potentially used as implants. Thus, we have developed a novel biocomposite that may open new avenues to enhance ligament tissue regeneration.


RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 64886-64891 ◽  
Author(s):  
Nemanja Trišović ◽  
Jelena Antanasijević ◽  
Tibor Tóth-Katona ◽  
Michal Kohout ◽  
Miroslaw Salamonczyk ◽  
...  

We present the synthesis and characterization of ten asymmetric bent-core liquid crystals with enantiotropic modulated smectic (B7 type) phases. Their relatively low and wide photosensitive mesomorphic temperature range offers potential applications.


2016 ◽  
Vol 22 (26) ◽  
pp. 8872-8878 ◽  
Author(s):  
Hiroki Eimura ◽  
Yoshikazu Umeta ◽  
Hiroko Tokoro ◽  
Masafumi Yoshio ◽  
Shin-ichi Ohkoshi ◽  
...  

Author(s):  
Mingzhao Chen ◽  
Jia-nan Cao ◽  
Suqing Li ◽  
Die Liu ◽  
Jun Wang ◽  
...  

The manufacturing of special architectures with predefined and predictable shape has received much attention on account of their potential applications. Understanding the mechanistic principles of the designed ligand is crucial...


2002 ◽  
Vol 59 (3) ◽  
pp. 410-416 ◽  
Author(s):  
B Alkhairalla ◽  
N Boden ◽  
E Cheadle ◽  
S. D Evans ◽  
J. R Henderson ◽  
...  

2020 ◽  
Author(s):  
Dan Liu ◽  
Jiale Liu ◽  
Bing Ma ◽  
Bo Deng ◽  
Haiyan Xu ◽  
...  

Abstract Background: Biomimetic nanoparticles have potential applications in many fields for their favorable properties. Results: Here, we developed a self-adjuvanting biomimetic anti-tumor nanovaccine, which was self-assembled with an amphiphilic conjugate synthetized with phospholipids of 1, 2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and hydrophilic Toll-like receptor (TLR9) agonists CpG ODN. The nanovaccine could not only provide effective initial antigens stimulation and sustained long-term antigen supply with a controlled release, but also induce antigens cross-presentation via MHC-I pathway initiating CD8+ T-cell responses. Moreover, the dense nucleotides shell around the nanovaccine could promote antigens endocytosis via various receptor-mediated pathways into dendritic cells. And CpG ODN interacted with TLR9 triggering the cytokines secretion of TNF-α and IL-10 further boosted the anti-tumor humoral and cellular immune responses, which led to significant tumor suppressive effect and remarkable survival prolongation. Conclusions: So, this nanovaccine self-assembled with phospholipid-nucleotide amphiphiles can serve as a safe, simple and efficient approach for anti-tumor immunotherapy.


2020 ◽  
Vol 69 (8) ◽  
pp. 086102
Author(s):  
Xing-Zheng Wang ◽  
Chen-Jing Yang ◽  
Li-Heng Cai ◽  
Dong Chen

Sign in / Sign up

Export Citation Format

Share Document