supported bilayers
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 15)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Nina Hartrampf ◽  
Samuel M. Leitao ◽  
Nils Winter ◽  
Henry Toombs-Ruane ◽  
James A. Frank ◽  
...  

AbstractSphingolipids are a structurally diverse class of lipids predominantly found in the plasma membrane of eukaryotic cells. These lipids can laterally segregate with other saturated lipids and cholesterol into lipid rafts; liquid-ordered (Lo) microdomains that act as organizing centers within biomembranes. Owing the vital role of sphingolipids for lipid segregation, controlling their lateral localization is of utmost significance. Hence, we made use of the light-induced trans-cis isomerization of azobenzene-modified acyl chains, to develop a set of photoswitchable sphingolipids, with different headgroups (hydroxyl, galactosyl, phosphocholine) and backbones (sphingosine, phytosphingosine, tetrahydropyran (THP)-blocked sphingosine), able to shuttle between liquid-ordered (Lo) and liquid-disordered (Ld) regions of model membranes upon irradiation with UV-A (λ = 365 nm) and blue (λ = 470 nm) light, respectively. Using combined high-speed atomic force microscopy, fluorescence microscopy, and force spectroscopy, we investigated how these active sphingolipids laterally remodel supported bilayers upon photo-isomerization, notably in terms of domain area changes, height mismatch, line tension, and membrane piercing. Hereby, we show that all sphingosine-(Azo-β-Gal-Cer, Azo-SM, Azo-Cer) and phytosphingosine-based (Azo-α-Gal-PhCer, Azo-PhCer) photolipids behave similarly, promoting a reduction in Lo domain area when in the UV-adapted cis-isoform. In contrast, azo-sphingolipids having THP groups that block H-bonding at the sphingosine backbone (Azo-THP-SM, Azo-THP-Cer) induce an increase in the Lo domain area when in cis, accompanied by a major rise in height mismatch and line tension. These changes were fully reversible upon blue light-triggered isomerization of the various lipids back to trans, pinpointing the role of interfacial interactions for the formation of stable Lo lipid raft domains.


2021 ◽  
Author(s):  
Ambika Somasundar ◽  
Niladri Sekhar Mandal ◽  
Ayusman Sen

The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge on how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport in lipid membranes. Using enzymes-attached lipids in supported bilayers (SLB), we show catalysis-induced enhanced lateral diffusion of lipids in the bilayer. Enhancing the membrane viscosity by increasing the cholesterol content in the bilayer suppresses the overall diffusion but not the relative diffusion enhancement of the enzyme-attached lipids. We also provide direct evidence of catalysis-induced membrane fluctuations leading to the enhanced diffusion of passive tracers resting on the SLB. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracers on SLBs. These are first steps in understanding diffusion and transport in lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3607
Author(s):  
Olena Dobrovolska ◽  
Øyvind Strømland ◽  
Ørjan Sele Handegård ◽  
Martin Jakubec ◽  
Morten L. Govasli ◽  
...  

The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.


2021 ◽  
Vol 50 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Hannes Witt ◽  
Filip Savić ◽  
Sarah Verbeek ◽  
Jörn Dietz ◽  
Gesa Tarantola ◽  
...  

AbstractMembrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242907
Author(s):  
Nathaniel Nelson ◽  
Belita Opene ◽  
Robert K. Ernst ◽  
Daniel K. Schwartz

The activity of antimicrobial peptides (AMPs) has significant bacterial species bias, the mechanisms of which are not fully understood. We employed single-molecule tracking to measure the affinity of three different AMPs to hybrid supported bilayers composed of lipid A extracted from four different Gram negative bacteria and observed a strong empirical anticorrelation between the affinity of a particular AMP to a given lipid A layer and the activity of that AMP towards the bacterium from which that lipid A was extracted. This suggested that the species bias of AMP activity is directly related to AMP interactions with bacterial outer membranes, despite the fact that the mechanism of antimicrobial activity occurs at the inner membrane. The trend also suggested that the interactions between AMPs and the outer membrane lipid A (even in the absence of other components, such as lipopolysaccharides) capture effects that are relevant to the minimum inhibitory concentration.


2020 ◽  
Author(s):  
Benedikt Junglas ◽  
Amelie Axt ◽  
Carmen Siebenaller ◽  
Hilal Sonel ◽  
Nadja Hellmann ◽  
...  

ABSTRACTThe inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. A soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabilizes membranes and/or triggers membrane-fusion processes. These apparently contradicting processes have to be tightly controlled and separated spatiotemporally in chloroplasts and cyanobacteria. The latter process depends on Mg2+-binding to IM30; yet, it still is unclear how Mg2+-loaded IM30 interacts with membranes and promotes membrane fusion. Here we show that interaction of Mg2+ with IM30 results in increased binding of IM30 to native as well as model membranes. Via Atomic Force Microscopy in liquid, IM30-induced bilayer defects were observed in solid-supported bilayers in presence of Mg2+. The observed interaction of IM30 with membrane surfaces differs dramatically from previously observed membrane-stabilizing, carpet-like structures in the absence of Mg2+. Mg2+-induced alterations of the IM30 structure switches the IM30 activity from a membrane-stabilizing to a membrane-destabilizing function, a crucial step in membrane fusion.


Langmuir ◽  
2020 ◽  
Vol 36 (26) ◽  
pp. 7609-7618
Author(s):  
Maryam Zare ◽  
Jay P. Kitt ◽  
Joel M. Harris

2020 ◽  
Vol 31 (7) ◽  
pp. 667-682 ◽  
Author(s):  
Marcos Francisco Núñez ◽  
Kathleen Wisser ◽  
Sarah L. Veatch

Cell membranes can influence local concentrations of signaling regulators around receptors via multiple physical mechanisms. It is shown that ordered, phase-like membrane domains can synergize with other mechanisms to enhance B-cell receptor signaling.


2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Jorge Larios ◽  
Vincent Mercier ◽  
Aurélien Roux ◽  
Jean Gruenberg

The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III–dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.


Sign in / Sign up

Export Citation Format

Share Document