scholarly journals Electrode Modified with Tin(IV) Oxide Nanoparticles and Surfactants as Sensitive Sensor for Hesperidin

2021 ◽  
Vol 5 (1) ◽  
pp. 54
Author(s):  
Elvira Yakupova ◽  
Guzel Ziyatdinova

Tin(IV) oxide nanoparticles in combination with surfactants were used as a sensitive layer in a sensor for hesperidin. The effect of the surfactant’s nature and concentration on the hesperidin response was evaluated. The best parameters were registered in the case of 500 µM cetylpyridinium bromide (CPB) as a dispersive agent. The SEM and electrochemical data confirmed the increase in sensor surface effective area and electron transfer rate. The sensor gave a linear response to hesperidin in the ranges of 0.10–10 and 10–75 µM with a detection limit of 77 nM. The approach was successfully tested on orange juices and validated using ultra-HPLC.

2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


ACS Nano ◽  
2013 ◽  
Vol 7 (6) ◽  
pp. 5391-5401 ◽  
Author(s):  
Emil Wierzbinski ◽  
Ravindra Venkatramani ◽  
Kathryn L. Davis ◽  
Silvia Bezer ◽  
Jing Kong ◽  
...  

2006 ◽  
Vol 110 (39) ◽  
pp. 19433-19442 ◽  
Author(s):  
William J. Royea ◽  
Thomas W. Hamann ◽  
Bruce S. Brunschwig ◽  
Nathan S. Lewis

Author(s):  
Karuppasamy Dharmaraj ◽  
Dirk Dattler ◽  
Heike Kahlert ◽  
Uwe Lendeckel ◽  
Felix Nagel ◽  
...  

AbstractThe effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems. Graphical abstract


2019 ◽  
Vol 295 ◽  
pp. 157-163 ◽  
Author(s):  
Keita Nishimura ◽  
Takuya Ushiyama ◽  
Nguyen Xuan Viet ◽  
Masafumi Inaba ◽  
Shigeru Kishimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document