scholarly journals In Nitrate-Rich Soil, Fallopia x bohemica Modifies Functioning of N Cycle Compared to Native Monocultures

Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 156
Author(s):  
Amélie A. M. Cantarel ◽  
Soraya Rouifed ◽  
Laurent Simon ◽  
Julien Bourg ◽  
Jonathan Gervaix ◽  
...  

The effects of invasive species at the ecosystem level remain an important component required to assess their impacts. Here, we conducted an experimental study with labeled nitrogen in two types of soil (low and high nitrate conditions), investigating the effects of (1) the presence of Fallopia x bohemica on the traits of three native species (Humulus lupulus, Sambucus ebulus, and Urtica dioica) and (2) interspecific competition (monoculture of the invasive species, monoculture of the native species, and a mixture of invasive/native species) on nitrification, denitrification, and related microbial communities (i.e., functional gene abundances). We found that the species with the higher nitrate assimilation rate (U. dioica) was affected differently by the invasive species, with no effect or even an increase in aboveground biomass and number of leaves. F. x bohemica also decreased denitrification, but only in the soil with high nitrate concentrations. The impacts of the invasive species on nitrification and soil microorganisms depended on the native species and the soil type, suggesting that competition for nitrogen between plants and between plants and microorganisms is highly dependent on species traits and environmental conditions. This research highlights that studies looking at the impacts of invasive species on ecosystems should consider the plant–soil–microorganism complex as a whole.

2021 ◽  
Author(s):  
Estibaliz Palma ◽  
Jian Yen ◽  
Peter Vesk ◽  
Montserrat Vila ◽  
Jane Catford

The introduction stage is usually overlooked in trait-based studies of invasiveness, implicitly assuming that species introductions are random. However, human activities promote the movement of specific types of species. Thus, species deliberately introduced for distinct purposes (e.g. gardening, forestry) or as contaminants of human commodities (e.g. stowaway) will likely show particular traits. If species with certain traits have been preferentially introduced (i.e. introduction bias), some traits may have been mistakenly linked to species' invasion abilities due to their influence on introduction probability. In this work, we propose a theoretical framework with different scenarios of introduction bias. The introduction scenarios are: (1) Random introduction, independent from traits; (2) Biologically biased introduction, following the worldwide distribution of the trait; and (3) Human biased introduction, following a theoretical introduction pathway that favours the introduction of species with high values of the trait. We evaluate how the introduced trait distributions in these scenarios may affect trait distributions in naturalized and invasive species pools under different hypothesized associations between traits and the probabilities of naturalization and invasion. The aim of this work is to identify situations where ignoring introduction bias may lead to spurious correlations being found between species' traits and species' ability to become naturalized or invasive. Our framework strongly points to the need to evaluate the traits of species that have become naturalized or invasive along with the traits of species that have failed to do so in order to unravel any existing introduction bias that may confound the correlation between species' traits and invasion success. Overlooking a possible introduction bias may lead to the overestimation of the correlation between the trait and the species' invasion ability, especially in cases when the pool of introduced species shows extreme values of the trait distribution (as compared to a random introduction). Trait-based studies that deserve special attention to avoid undesired effects of introduction bias on their findings are: those that investigate naturalization using only the pool of naturalized species, and those studies that examine invasiveness by comparing invasive species with native species.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Głowacki ◽  
Andrzej Kruk ◽  
Tadeusz Penczak

AbstractThe knowledge of biotic and abiotic drivers that put non-native invasive fishes at a disadvantage to native ones is necessary for suppressing invasions, but the knowledge is scarce, particularly when abiotic changes are fast. In this study, we increased this knowledge by an analysis of the biomass of most harmful Prussian carp Carassius gibelio in a river reviving from biological degradation. The species' invasion followed by the invasion's reversal occurred over only two decades and were documented by frequent monitoring of fish biomass and water quality. An initial moderate improvement in water quality was an environmental filter that enabled Prussian carp’s invasion but prevented the expansion of other species. A later substantial improvement stimulated native species’ colonization of the river, and made one rheophil, ide Leuciscus idus, a significant Prussian carp’s replacer. The redundancy analysis (RDA) of the dependence of changes in the biomass of fish species on water quality factors indicated that Prussian carp and ide responded in a significantly opposite way to changes in water quality in the river over the study period. However, the dependence of Prussian carp biomass on ide biomass, as indicated by regression analysis and analysis of species traits, suggests that the ecomorphological similarity of both species might have produced interference competition that contributed to Prussian carp’s decline.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115296
Author(s):  
Xuejuan Bai ◽  
Yimei Huang ◽  
Baorong Wang ◽  
Yakov Kuzyakov ◽  
Shaoshan An

2010 ◽  
Vol 26 (3) ◽  
pp. 347-350 ◽  
Author(s):  
Jannie Fries Linnebjerg ◽  
Dennis M. Hansen ◽  
Nancy Bunbury ◽  
Jens M. Olesen

Disruption of ecosystems is one of the biggest threats posed by invasive species (Mack et al. 2000). Thus, one of the most important challenges is to understand the impact of exotic species on native species and habitats (e.g. Jones 2008). The probability that entire ‘invasive communities’ will develop increases as more species establish in new areas (Bourgeois et al. 2005). For example, introduced species may act in concert, facilitating one another's invasion, and increasing the likelihood of successful establishment, spread and impact. Simberloff & Von Holle (1999) introduced the term ‘invasional meltdown’ for this process, which has received widespread attention since (e.g. O'Dowd 2003, Richardson et al. 2000, Simberloff 2006). Positive interactions among introduced species are relatively common, but few have been studied in detail (Traveset & Richardson 2006). Examples include introduced insects and birds that pollinate and disperse exotic plants, thereby facilitating the spread of these species into non-invaded habitats (Goulson 2003, Mandon-Dalger et al. 2004, Simberloff & Von Holle 1999). From a more general ecological perspective, the study of interactions involving introduced and invasive species can contribute to our knowledge of ecological processes – for example, community assembly and indirect interactions.


Sign in / Sign up

Export Citation Format

Share Document