scholarly journals Single Real Goal, Magnitude-Based Deceptive Path-Planning

Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 88 ◽  
Author(s):  
Kai Xu ◽  
Yunxiu Zeng ◽  
Long Qin ◽  
Quanjun Yin

Deceptive path-planning is the task of finding a path so as to minimize the probability of an observer (or a defender) identifying the observed agent’s final goal before the goal has been reached. It is one of the important approaches to solving real-world challenges, such as public security, strategic transportation, and logistics. Existing methods either cannot make full use of the entire environments’ information, or lack enough flexibility for balancing the path’s deceptivity and available moving resource. In this work, building on recent developments in probabilistic goal recognition, we formalized a single real goal magnitude-based deceptive path-planning problem followed by a mixed-integer programming based deceptive path maximization and generation method. The model helps to establish a computable foundation for any further imposition of different deception concepts or strategies, and broadens its applicability in many scenarios. Experimental results showed the effectiveness of our methods in deceptive path-planning compared to the existing one.

2016 ◽  
Vol 26 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Martin Klaučo ◽  
Slavomír Blažek ◽  
Michal Kvasnica

Abstract A path planning problem for a heterogeneous vehicle is considered. Such a vehicle consists of two parts which have the ability to move individually, but one of them has a shorter range and is therefore required to keep in a close distance to the main vehicle. The objective is to devise an optimal path of minimal length under the condition that at least one part of the heterogeneous system visits all desired waypoints exactly once. Two versions of the problem are considered. One assumes that the order in which the waypoints are visited is known a priori. In such a case we show that the optimal path can be found by solving a mixed-integer second-order cone problem. The second version assumes that the order in which the waypoints are visited is not known a priori, but can be optimized so as to shorten the length of the path. Two approaches to solve this problem are presented and evaluated with respect to computational complexity.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Elín Björk Böðvarsdóttir ◽  
Niels-Christian Fink Bagger ◽  
Laura Elise Høffner ◽  
Thomas J. R. Stidsen

Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Sign in / Sign up

Export Citation Format

Share Document