scholarly journals Gaussian Process Regression for Data Fulfilling Linear Differential Equations with Localized Sources

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 152
Author(s):  
Christopher G. Albert ◽  
Katharina Rath

Specialized Gaussian process regression is presented for data that are known to fulfill a given linear differential equation with vanishing or localized sources. The method allows estimation of system parameters as well as strength and location of point sources. It is applicable to a wide range of data from measurement and simulation. The underlying principle is the well-known invariance of the Gaussian probability distribution under linear operators, in particular differentiation. In contrast to approaches with a generic covariance function/kernel, we restrict the Gaussian process to generate only solutions of the homogeneous part of the differential equation. This requires specialized kernels with a direct correspondence of certain kernel hyperparameters to parameters in the underlying equation and leads to more reliable regression results with less training data. Inhomogeneous contributions from linear superposition of point sources are treated via a linear model over fundamental solutions. Maximum likelihood estimates for hyperparameters and source positions are obtained by nonlinear optimization. For differential equations representing laws of physics the present approach generates only physically possible solutions, and estimated hyperparameters represent physical properties. After a general derivation, modeling of source-free data and parameter estimation is demonstrated for Laplace’s equation and the heat/diffusion equation. Finally, the Helmholtz equation with point sources is treated, representing scalar wave data such as acoustic pressure in the frequency domain.

Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 5 ◽  
Author(s):  
Christopher G. Albert

A method to reconstruct fields, source strengths and physical parameters based on Gaussian process regression is presented for the case where data are known to fulfill a given linear differential equation with localized sources. The approach is applicable to a wide range of data from physical measurements and numerical simulations. It is based on the well-known invariance of the Gaussian under linear operators, in particular differentiation. Instead of using a generic covariance function to represent data from an unknown field, the space of possible covariance functions is restricted to allow only Gaussian random fields that fulfill the homogeneous differential equation. The resulting tailored kernel functions lead to more reliable regression compared to using a generic kernel and makes some hyperparameters directly interpretable. For differential equations representing laws of physics such a choice limits realizations of random fields to physically possible solutions. Source terms are added by superposition and their strength estimated in a probabilistic fashion, together with possibly unknown hyperparameters with physical meaning in the differential operator.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


Filomat ◽  
2019 ◽  
Vol 33 (13) ◽  
pp. 4013-4020
Author(s):  
Jianren Long ◽  
Sangui Zeng

We investigate the [p,q]-order of growth of solutions of the following complex linear differential equation f(k)+Ak-1(z) f(k-1) + ...+ A1(z) f? + A0(z) f = 0, where Aj(z) are analytic in C? - {z0}, z0 ? C. Some estimations of [p,q]-order of growth of solutions of the equation are obtained, which is generalization of previous results from Fettouch-Hamouda.


2013 ◽  
Vol 21 (2) ◽  
pp. 35-52
Author(s):  
Benharrat Belaïdi ◽  
Habib Habib

Abstract In this paper, we investigate the order and the hyper-order of growth of solutions of the linear differential equation where n≥2 is an integer, Aj (z) (≢0) (j = 1,2) are entire functions with max {σ A(j) : (j = 1,2} < 1, Q (z) = qmzm + ... + q1z + q0 is a nonoonstant polynomial and a1, a2 are complex numbers. Under some conditions, we prove that every solution f (z) ≢ 0 of the above equation is of infinite order and hyper-order 1.


2018 ◽  
Vol 20 (04) ◽  
pp. 1750038
Author(s):  
Andrei Minchenko ◽  
Alexey Ovchinnikov

Motivated by developing algorithms that decide hypertranscendence of solutions of extensions of the Bessel differential equation, algorithms computing the unipotent radical of a parameterized differential Galois group have been recently developed. Extensions of Bessel’s equation, such as the Lommel equation, can be viewed as homogeneous parameterized linear differential equations of the third order. In this paper, we give the first known algorithm that calculates the differential Galois group of a third-order parameterized linear differential equation.


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1951 ◽  
Vol 3 ◽  
pp. 335-338 ◽  
Author(s):  
E. A. Coddington ◽  
N. Levinson

Let p(x) &gt; 0, q(x) be two real-valued continuous functions on . Suppose that the differential equation with the real parameter λ


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Zhigang Huang

This paper is devoted to studying the growth of solutions of second-order nonhomogeneous linear differential equation with meromorphic coefficients. We also discuss the relationship between small functions and differential polynomialsL(f)=d2f″+d1f′+d0fgenerated by solutions of the above equation, whered0(z),d1(z),andd2(z)are entire functions that are not all equal to zero.


Author(s):  
Ondřej Došlý

SynopsisThe conjecture of Muller-Pfeiffer [4] concerning the oscillation behaviour of the differential equation (–l)n(p(x)y(n))(n) + q(x)y = 0 is proved, and a similar conjecture concerning the more general differential equation ∑nk=0(−l)k(Pk(x)y(k)(k + q(x)y= 0 is formulated.


Sign in / Sign up

Export Citation Format

Share Document