scholarly journals Rate Adaption for Secure HARQ-CC System with Multiple Eavesdroppers

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 403
Author(s):  
Yue Wu ◽  
Shishu Yin ◽  
Jian Zhou ◽  
Pei Yang ◽  
Hongwen Yang

In this paper, we studied the secure transmission of a hybrid automatic repeat request with chase combining (HARQ-CC) system, under the existence of multiple eavesdroppers and limited latency. First, we analyzed some critical performance metrics, including connection outage probability (COP), secrecy outage probability (SOP) and effective secrecy throughput (EST). Then, to maximize the EST, three optimization problems of rate adaption were discussed: (i) optimizing the code rate with a given secrecy redundancy rate by a parameterized closed-form solution; (ii) optimizing the secrecy redundancy rate with a given code rate by a fixed-point method; (iii) optimizing both code rate and secrecy redundancy rate by an iterative optimization algorithm. We also considered COP and SOP constraints among the problems while corresponding solutions were deduced. Finally, numerical and simulated results verified our conclusions that the approximated SOP matches well with Monte–Carlo simulation for a strict reliable constraint, and that the optimized transmitting rate enhances EST efficiently with multiple eavesdroppers and retransmissions. Moreover, the influence of the number of eavesdroppers on secrecy performance was analyzed. Briefly, secrecy performance inevitably deteriorates with increasing number of eavesdroppers due to raised information leakage.

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Makan Zamanipour

The paper principally proposes a suboptimally closed-form solution in terms of a general asymptotic bound of the secrecy capacity in relation to MIMOME-based transceivers. Such pivotal solution is essentially tight as well, fundamentally originating from the principle convexity. The resultant novelty, per se, is strictly necessary since the absolutely central criterion imperfect knowledge of the wiretap channel at the transmitter should also be highly regarded. Meanwhile, ellipsoidal channel uncertainty set-driven strategies are physically taken into consideration. Our proposed solution is capable of perfectly being applied for other general equilibria such as multiuser ones. In fact, this in principle addresses an entirely appropriate alternative for worst-case method-driven algorithms utilising some provable inequality-based mathematical expressions. Our framework is adequately guaranteed regarding a totally acceptable outage probability (as 1 − preciseness coefficient). The relative value is almost 10% for the estimation error values (EEVs) ⩽0.5 for 2×2-based transceivers, which is noticeably reinforced at nearly 5% for EEVs  ⩽0.9 for the case 4×4. Furthermore, our proposed scheme basically guarantees the secrecy outage probability (SOP) less than 0.05% for the case of having EEVs ⩽0.3, for the higher power regime.


2021 ◽  
Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.


Author(s):  
Partha Sarathi Dutta

In this study, cross-layer approach for joint routing and power allocation problem is formulated in an optimization framework for end-to-end outage minimization under the constraint of total permissible transmission power. A closed form solution for optimal transmission power is obtained following the extraction of routing metric. The scheme is referred as minimum end-to-end outage probability (MEO) strategy. A distributed implementation of the proposed strategy is also presented. Simulation results prove that our proposed MEO routing and power allocation strategy succeeds in achieving significant improvement of end-to-end outage probability over MEO routing and equal power allocation scheme.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 79637-79649
Author(s):  
Tung Pham Huu ◽  
Tam Ninh Thi-Thanh ◽  
Chi Nguyen-Yen ◽  
Hung Tran ◽  
Viet Nguyen Dinh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document