scholarly journals Cross-Layer Routing for Outage Minimization in Multihop Ad-Hoc Networks

Author(s):  
Partha Sarathi Dutta

In this study, cross-layer approach for joint routing and power allocation problem is formulated in an optimization framework for end-to-end outage minimization under the constraint of total permissible transmission power. A closed form solution for optimal transmission power is obtained following the extraction of routing metric. The scheme is referred as minimum end-to-end outage probability (MEO) strategy. A distributed implementation of the proposed strategy is also presented. Simulation results prove that our proposed MEO routing and power allocation strategy succeeds in achieving significant improvement of end-to-end outage probability over MEO routing and equal power allocation scheme.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6024
Author(s):  
Chunling Peng ◽  
Guozhong Wang ◽  
Fangwei Li ◽  
Huaping Liu

This paper considers simultaneous wireless information and power transfer (SWIPT) in a decode-and-forward two-way relay (DF-TWR) network, where a power splitting protocol is employed at the relay for energy harvesting. The goal is to jointly optimize power allocation (PA) at the source nodes, power splitting (PS) at the relay node, and time allocation (TA) of each duration to minimize the system outage probability. In particular, we propose a static joint resource allocation (JRA) scheme and a dynamic JRA scheme with statistical channel properties and instantaneous channel characteristics, respectively. With the derived closed-form expression of the outage probability, a successive alternating optimization algorithm is proposed to tackle the static JRA problem. For the dynamic JRA scheme, a suboptimal closed-form solution is derived based on a multistep optimization and relaxation method. We present a comprehensive set of simulation results to evaluate the proposed schemes and compare their performances with those of existing resource allocation schemes.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Makan Zamanipour

The paper principally proposes a suboptimally closed-form solution in terms of a general asymptotic bound of the secrecy capacity in relation to MIMOME-based transceivers. Such pivotal solution is essentially tight as well, fundamentally originating from the principle convexity. The resultant novelty, per se, is strictly necessary since the absolutely central criterion imperfect knowledge of the wiretap channel at the transmitter should also be highly regarded. Meanwhile, ellipsoidal channel uncertainty set-driven strategies are physically taken into consideration. Our proposed solution is capable of perfectly being applied for other general equilibria such as multiuser ones. In fact, this in principle addresses an entirely appropriate alternative for worst-case method-driven algorithms utilising some provable inequality-based mathematical expressions. Our framework is adequately guaranteed regarding a totally acceptable outage probability (as 1 − preciseness coefficient). The relative value is almost 10% for the estimation error values (EEVs) ⩽0.5 for 2×2-based transceivers, which is noticeably reinforced at nearly 5% for EEVs  ⩽0.9 for the case 4×4. Furthermore, our proposed scheme basically guarantees the secrecy outage probability (SOP) less than 0.05% for the case of having EEVs ⩽0.3, for the higher power regime.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 403
Author(s):  
Yue Wu ◽  
Shishu Yin ◽  
Jian Zhou ◽  
Pei Yang ◽  
Hongwen Yang

In this paper, we studied the secure transmission of a hybrid automatic repeat request with chase combining (HARQ-CC) system, under the existence of multiple eavesdroppers and limited latency. First, we analyzed some critical performance metrics, including connection outage probability (COP), secrecy outage probability (SOP) and effective secrecy throughput (EST). Then, to maximize the EST, three optimization problems of rate adaption were discussed: (i) optimizing the code rate with a given secrecy redundancy rate by a parameterized closed-form solution; (ii) optimizing the secrecy redundancy rate with a given code rate by a fixed-point method; (iii) optimizing both code rate and secrecy redundancy rate by an iterative optimization algorithm. We also considered COP and SOP constraints among the problems while corresponding solutions were deduced. Finally, numerical and simulated results verified our conclusions that the approximated SOP matches well with Monte–Carlo simulation for a strict reliable constraint, and that the optimized transmitting rate enhances EST efficiently with multiple eavesdroppers and retransmissions. Moreover, the influence of the number of eavesdroppers on secrecy performance was analyzed. Briefly, secrecy performance inevitably deteriorates with increasing number of eavesdroppers due to raised information leakage.


Sign in / Sign up

Export Citation Format

Share Document