scholarly journals Asymptotic Bound of Secrecy Capacity for MIMOME-Based Transceivers: A Suboptimally Tractable Solution for Imperfect CSI

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Makan Zamanipour

The paper principally proposes a suboptimally closed-form solution in terms of a general asymptotic bound of the secrecy capacity in relation to MIMOME-based transceivers. Such pivotal solution is essentially tight as well, fundamentally originating from the principle convexity. The resultant novelty, per se, is strictly necessary since the absolutely central criterion imperfect knowledge of the wiretap channel at the transmitter should also be highly regarded. Meanwhile, ellipsoidal channel uncertainty set-driven strategies are physically taken into consideration. Our proposed solution is capable of perfectly being applied for other general equilibria such as multiuser ones. In fact, this in principle addresses an entirely appropriate alternative for worst-case method-driven algorithms utilising some provable inequality-based mathematical expressions. Our framework is adequately guaranteed regarding a totally acceptable outage probability (as 1 − preciseness coefficient). The relative value is almost 10% for the estimation error values (EEVs) ⩽0.5 for 2×2-based transceivers, which is noticeably reinforced at nearly 5% for EEVs  ⩽0.9 for the case 4×4. Furthermore, our proposed scheme basically guarantees the secrecy outage probability (SOP) less than 0.05% for the case of having EEVs ⩽0.3, for the higher power regime.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 99
Author(s):  
Eduard Jorswieck ◽  
Pin-Hsun Lin ◽  
Karl-Ludwig Besser

It is known that for a slow fading Gaussian wiretap channel without channel state information at the transmitter and with statistically independent fading channels, the outage probability of any given target secrecy rate is non-zero, in general. This implies that the so-called zero-outage secrecy capacity (ZOSC) is zero and we cannot transmit at any positive data rate reliably and confidentially. When the fading legitimate and eavesdropper channels are statistically dependent, this conclusion changes significantly. Our work shows that there exist dependency structures for which positive zero-outage secrecy rates (ZOSR) are achievable. In this paper, we are interested in the characterization of these dependency structures and we study the system parameters in terms of the number of observations at legitimate receiver and eavesdropper as well as average channel gains for which positive ZOSR are achieved. First, we consider the setting that there are two paths from the transmitter to the legitimate receiver and one path to the eavesdropper. We show that by introducing a proper dependence structure among the fading gains of the three paths, we can achieve a zero secrecy outage probability (SOP) for some positive secrecy rate. In this way, we can achieve a non-zero ZOSR. We conjecture that the proposed dependency structure achieves maximum ZOSR. To better understand the underlying dependence structure, we further consider the case where the channel gains are from finite alphabets and systematically and globally solve the ZOSC. In addition, we apply the rearrangement algorithm to solve the ZOSR for continuous channel gains. The results indicate that the legitimate link must have an advantage in terms of the number of antennas and average channel gains to obtain positive ZOSR. The results motivate further studies into the optimal dependency structures.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 403
Author(s):  
Yue Wu ◽  
Shishu Yin ◽  
Jian Zhou ◽  
Pei Yang ◽  
Hongwen Yang

In this paper, we studied the secure transmission of a hybrid automatic repeat request with chase combining (HARQ-CC) system, under the existence of multiple eavesdroppers and limited latency. First, we analyzed some critical performance metrics, including connection outage probability (COP), secrecy outage probability (SOP) and effective secrecy throughput (EST). Then, to maximize the EST, three optimization problems of rate adaption were discussed: (i) optimizing the code rate with a given secrecy redundancy rate by a parameterized closed-form solution; (ii) optimizing the secrecy redundancy rate with a given code rate by a fixed-point method; (iii) optimizing both code rate and secrecy redundancy rate by an iterative optimization algorithm. We also considered COP and SOP constraints among the problems while corresponding solutions were deduced. Finally, numerical and simulated results verified our conclusions that the approximated SOP matches well with Monte–Carlo simulation for a strict reliable constraint, and that the optimized transmitting rate enhances EST efficiently with multiple eavesdroppers and retransmissions. Moreover, the influence of the number of eavesdroppers on secrecy performance was analyzed. Briefly, secrecy performance inevitably deteriorates with increasing number of eavesdroppers due to raised information leakage.


Author(s):  
Partha Sarathi Dutta

In this study, cross-layer approach for joint routing and power allocation problem is formulated in an optimization framework for end-to-end outage minimization under the constraint of total permissible transmission power. A closed form solution for optimal transmission power is obtained following the extraction of routing metric. The scheme is referred as minimum end-to-end outage probability (MEO) strategy. A distributed implementation of the proposed strategy is also presented. Simulation results prove that our proposed MEO routing and power allocation strategy succeeds in achieving significant improvement of end-to-end outage probability over MEO routing and equal power allocation scheme.


2019 ◽  
Vol 10 (4) ◽  
pp. 897-929 ◽  
Author(s):  
Matthias Pilz ◽  
Luluwah Al-Fagih

AbstractSmart metering infrastructure allows for two-way communication and power transfer. Based on this promising technology, we propose a demand-side management (DSM) scheme for a residential neighbourhood of prosumers. Its core is a discrete time dynamic game to schedule individually owned home energy storage. The system model includes an advanced battery model, local generation of renewable energy, and forecasting errors for demand and generation. We derive a closed-form solution for the best response problem of a player and construct an iterative algorithm to solve the game. Empirical analysis shows exponential convergence towards the Nash equilibrium. A comparison of a DSM scheme with a static game reveals the advantages of the dynamic game approach. We provide an extensive analysis on the influence of the forecasting error on the outcome of the game. A key result demonstrates that our approach is robust even in the worst-case scenario. This grants considerable gains for the utility company organising the DSM scheme and its participants.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Le Tang ◽  
Aifan Ling

With the uncertainty probability distribution, we establish the worst-case CVaR (WCCVaR) risk measure and discuss a robust portfolio selection problem with WCCVaR constraint. The explicit solution, instead of numerical solution, is found and two-fund separation is proved. The comparison of efficient frontier with mean-variance model is discussed and finally we give numerical comparison with VaR model and equally weighted strategy. The numerical findings indicate that the proposed WCCVaR model has relatively smaller risk and greater return and relatively higher accumulative wealth than VaR model and equally weighted strategy.


2011 ◽  
Vol 201-203 ◽  
pp. 1272-1278
Author(s):  
Kuo Ming Cheng ◽  
Jhy Cherng Tsai

Tolerancing is one of the most crucial foundations for industry development and an index of product quality and cost. As tolerance allocation is based on manufacturing costs, this paper proposes a comprehensive method for optimal tolerance allocation with minimum manufacturing cost subject to constraints on dimensional chains and machining capabilities. The general reciprocal power and exponential cost-tolerance models with equality constraints as well as the worst-case and statistical tolerancings are employed in this method. A closed-form solution for the optimization problem by applying Lagrange multipliers is derived. The optimal tolerance allocation problem for reciprocal exponential cost-tolerance model by introducing Lambert W function is demonstrated. For constrained minimization problems with only equality constraints, the optimum design can be obtained by solving simultaneous equations without differentiating. An example is illustrated to demonstrate this approach. The result also shows that tolerance can be allocated economically and accurately using this method. The contribution of this paper is to solve the optimal tolerancing allocation problem by an efficient and robust method with simultaneous active constraints.


Sign in / Sign up

Export Citation Format

Share Document