scholarly journals Applications of Distributed-Order Fractional Operators: A Review

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 110
Author(s):  
Wei Ding ◽  
Sansit Patnaik ◽  
Sai Sidhardh ◽  
Fabio Semperlotti

Distributed-order fractional calculus (DOFC) is a rapidly emerging branch of the broader area of fractional calculus that has important and far-reaching applications for the modeling of complex systems. DOFC generalizes the intrinsic multiscale nature of constant and variable-order fractional operators opening significant opportunities to model systems whose behavior stems from the complex interplay and superposition of nonlocal and memory effects occurring over a multitude of scales. In recent years, a significant amount of studies focusing on mathematical aspects and real-world applications of DOFC have been produced. However, a systematic review of the available literature and of the state-of-the-art of DOFC as it pertains, specifically, to real-world applications is still lacking. This review article is intended to provide the reader a road map to understand the early development of DOFC and the progressive evolution and application to the modeling of complex real-world problems. The review starts by offering a brief introduction to the mathematics of DOFC, including analytical and numerical methods, and it continues providing an extensive overview of the applications of DOFC to fields like viscoelasticity, transport processes, and control theory that have seen most of the research activity to date.

Author(s):  
Sansit Patnaik ◽  
John P. Hollkamp ◽  
Fabio Semperlotti

Variable-order fractional operators were conceived and mathematically formalized only in recent years. The possibility of formulating evolutionary governing equations has led to the successful application of these operators to the modelling of complex real-world problems ranging from mechanics, to transport processes, to control theory, to biology. Variable-order fractional calculus (VO-FC) is a relatively less known branch of calculus that offers remarkable opportunities to simulate interdisciplinary processes. Recognizing this untapped potential, the scientific community has been intensively exploring applications of VO-FC to the modelling of engineering and physical systems. This review is intended to serve as a starting point for the reader interested in approaching this fascinating field. We provide a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems. More specifically, following a short introduction of the fundamental mathematical concepts, we present the topic of VO-FC from the point of view of practical applications in the context of scientific modelling.


2021 ◽  
Vol 5 (4) ◽  
pp. 224
Author(s):  
Mehmet Ali Özarslan ◽  
Arran Fernandez ◽  
Iván Area

The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications due to their properties of interpolation between operators of integer order [...]


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 256
Author(s):  
Christian Rodenbücher ◽  
Kristof Szot

Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]


Author(s):  
Roberto Garrappa ◽  
Andrea Giusti ◽  
Francesco Mainardi

Sign in / Sign up

Export Citation Format

Share Document