scholarly journals Parallel Mixed Image Encryption and Extraction Algorithm Based on Compressed Sensing

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 278
Author(s):  
Jiayin Yu ◽  
Chao Li ◽  
Xiaomeng Song ◽  
Shiyu Guo ◽  
Erfu Wang

In the actual image processing process, we often encounter mixed images that contain multiple valid messages. Such images not only need to be transmitted safely, but also need to be able to achieve effective separation at the receiving end. This paper designs a secure and efficient encryption and separation algorithm based on this kind of mixed image. Since chaotic system has the characteristics of initial sensitivity and pseudo-randomness, a chaos matrix is introduced into the compressed sensing framework. By using sequence signal to adjust the chaotic system, the key space can be greatly expanded. In the algorithm, we take the way of parallel transmission to block the data. This method can realize the efficient calculation of complex tasks in the image encryption system and improve the data processing speed. In the decryption part, the algorithm in this paper can not only realize the restoration of images, but also complete the effective separation of images through the improved restoration algorithm.

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 819 ◽  
Author(s):  
Yaqin Xie ◽  
Jiayin Yu ◽  
Shiyu Guo ◽  
Qun Ding ◽  
Erfu Wang

In this paper, a new three-dimensional chaotic system is proposed for image encryption. The core of the encryption algorithm is the combination of chaotic system and compressed sensing, which can complete image encryption and compression at the same time. The Lyapunov exponent, bifurcation diagram and complexity of the new three-dimensional chaotic system are analyzed. The performance analysis shows that the chaotic system has two positive Lyapunov exponents and high complexity. In the encryption scheme, a new chaotic system is used as the measurement matrix for compressed sensing, and Arnold is used to scrambling the image further. The proposed method has better reconfiguration ability in the compressible range of the algorithm compared with other methods. The experimental results show that the proposed encryption scheme has good encryption effect and image compression capability.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guangya Peng ◽  
Fuhong Min ◽  
Enrong Wang

The four-wing memristive chaotic system used in synchronization is applied to secure communication which can increase the difficulty of deciphering effectively and enhance the security of information. In this paper, a novel four-wing memristive chaotic system with an active cubic flux-controlled memristor is proposed based on a Lorenz-like circuit. Dynamical behaviors of the memristive system are illustrated in terms of Lyapunov exponents, bifurcation diagrams, coexistence Poincaré maps, coexistence phase diagrams, and attraction basins. Besides, the modular equivalent circuit of four-wing memristive system is designed and the corresponding results are observed to verify its accuracy and rationality. A nonlinear synchronization controller with exponential function is devised to realize synchronization of the coexistence of multiple attractors, and the synchronization control scheme is applied to image encryption to improve secret key space. More interestingly, considering different influence of multistability on encryption, the appropriate key is achieved to enhance the antideciphering ability.


2019 ◽  
Vol 29 (1) ◽  
pp. 1202-1215 ◽  
Author(s):  
Rageed Hussein AL-Hashemy ◽  
Sadiq A. Mehdi

Abstract This article introduces a simple and effective new algorithm for image encryption using a chaotic system which is based on the magic squares. This novel 3D chaotic system is invoked to generate a random key to encrypt any color image. A number of chaotic keys equal to the size of the image are generated by this chaotic system and arranged into a matrix then divided into non-overlapped submatrices. The image to be encrypted is also divided into sub-images, and each sub-image is multiplied by a magic matrix to produce another set of matrices. The XOR operation is then used on the resultant two sets of matrices to produce the encrypted image. The strength of the encryption method is tested in two folds. The first fold is the security analysis which includes key space analysis and sensitivity analysis. In the second fold, statistical analysis was performed, which includes the correlation coefficients, information entropy, the histogram, and analysis of differential attacks. Finally, the time of encryption and decryption was computed and show very good results.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 640
Author(s):  
Xin Jin ◽  
Xintao Duan ◽  
Hang Jin ◽  
Yuanyuan Ma

Aiming at the problems of small key space, low security of encryption structure, and easy to crack existing image encryption algorithms combining chaotic system and DNA sequence, this paper proposes an image encryption algorithm based on a hidden attractor chaotic system and shuffling algorithm. Firstly, the chaotic sequence generated by the hidden attractor chaotic system is used to encrypt the image. The shuffling algorithm is used to scramble the image, and finally, the DNA sequence operation is used to diffuse the pixel value of the image. Experimental results show that the key space of the scheme reaches 2327 and is very sensitive to keys. The histogram of encrypted images is evenly distributed. The correlation coefficient of adjacent pixels is close to 0. The entropy values of encrypted images are all close to eight and the unified average change intensity (UACI) value and number of pixel changing rate (NPCR) value are close to ideal values. All-white and all-black image experiments meet the requirements. Experimental results show that the encryption scheme in this paper can effectively resist exhaustive attacks, statistical attacks, differential cryptanalysis, known plaintext and selected plaintext attacks, and noise attacks. The above research results show that the system has better encryption performance, and the proposed scheme is useful and practical in communication and can be applied to the field of image encryption.


2012 ◽  
Vol 500 ◽  
pp. 465-470 ◽  
Author(s):  
Hong Ye Zhang ◽  
Run Hui Wang

An image encryption technology based on multi-dimension chaotic system, spatiotemporal chaotic theory and traditional symmetric encryption algorithm is presented. The scrambling transformation was completed with multi-dimension chaotic system first. Then spatiotemporal chaotic theory was used to deal with gray transformation for each pixel. DES Algorithm was applied to implement image encryption at last. Theoretical analyses and simulated experiment show that the proposed image encryption scheme provides perfect results, larger key space and higher security, so this encryption system has excellent performance against many kinds of attacks.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 291
Author(s):  
Chunyang Sun ◽  
Erfu Wang ◽  
Bing Zhao

Digital images can be large in size and contain sensitive information that needs protection. Compression using compressed sensing performs well, but the measurement matrix directly affects the signal compression and reconstruction performance. The good cryptographic characteristics of chaotic systems mean that using one to construct the measurement matrix has obvious advantages. However, existing low-dimensional chaotic systems have low complexity and generate sequences with poor randomness. Hence, a new six-dimensional non-degenerate discrete hyperchaotic system with six positive Lyapunov exponents is proposed in this paper. Using this chaotic system to design the measurement matrix can improve the performance of image compression and reconstruction. Because image encryption using compressed sensing cannot resist known- and chosen-plaintext attacks, the chaotic system proposed in this paper is introduced into the compressed sensing encryption framework. A scrambling algorithm and two-way diffusion algorithm for the plaintext are used to encrypt the measured value matrix. The security of the encryption system is further improved by generating the SHA-256 value of the original image to calculate the initial conditions of the chaotic map. A simulation and performance analysis shows that the proposed image compression-encryption scheme has high compression and reconstruction performance and the ability to resist known- and chosen-plaintext attacks.


Author(s):  
Yin Dai ◽  
Huanzhen Wang ◽  
Yuyi Wang

Due to the rapid rise of telemedicine, a lot of patients’ information will be transmitted through the Internet. However, the patients’ information is related to personal privacy, therefore, patients’ information needs to be encrypted when transmited and stored. Medical image encryption is a part of it. Due to the informative fine features of medical images, a common image encryption algorithm is no longer applied. Common encryption algorithm has a single theory based on chaos image encryption algorithm, other encryption algorithms are based on information entropy. However, the images processed with these cipher text encryption algorithm are cyclical, the outline is clear and the anti-tamper capability is not strong. In view of the bit being the smallest measure unit of pixel, in order to overcome the weakness from above algorithm, and take the advantage of the chaotic system, this paper will present a chaotic medical image encryption algorithm based on bit-plane decomposition. The paper combines the image encryption and chaotic system to improve the security. This way, it can increase the security of key space and image effectively. The histogram, pixel correlation, number of pixels change rate (NPCR) and other experimental results show that the algorithm satisfies the desired effect.


Sign in / Sign up

Export Citation Format

Share Document