scholarly journals Continuous-Variable Quantum Key Distribution Based on Heralded Hybrid Linear Amplifier with a Local Local Oscillator

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1395
Author(s):  
Yin Li ◽  
Yijun Wang ◽  
Yun Mao ◽  
Weishao Peng ◽  
Di Jin ◽  
...  

An improved continuous variable quantum key distribution (CVQKD) approach based on a heralded hybrid linear amplifier (HLA) is proposed in this study, which includes an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The CVQKD, which is based on an amplifier, enhances the signal-to-noise ratio and provides for fine control between high gain and strong noise reduction. We focus on the impact of two types of optical amplifiers on system performance: phase sensitive amplifiers (PSA) and phase insensitive amplifiers (PIA). The results indicate that employing amplifiers, local local oscillation-based CVQKD systems can enhance key rates and communication distances. In addition, the PIA-based CVQKD system has a broader application than the PSA-based system.

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 882
Author(s):  
Kunlin Zhou ◽  
Xuelin Wu ◽  
Yun Mao ◽  
Zhiya Chen ◽  
Qin Liao ◽  
...  

In practical quantum communication networks, the scheme of continuous-variable quantum key distribution (CVQKD) faces a challenge that the entangled source is controlled by a malicious eavesdropper, and although it still can generate a positive key rate and security, its performance needs to be improved, especially in secret key rate and maximum transmission distance. In this paper, we proposed a method based on the four-state discrete modulation and a heralded hybrid linear amplifier to enhance the performance of CVQKD where the entangled source originates from malicious eavesdropper. The four-state CVQKD encodes information by nonorthogonal coherent states in phase space. It has better transmission distance than Gaussian modulation counterpart, especially at low signal-to-noise ratio (SNR). Moreover, the hybrid linear amplifier concatenates a deterministic linear amplifier (DLA) and a noiseless linear amplifier (NLA), which can improve the probability of amplification success and reduce the noise penalty caused by the measurement. Furthermore, the hybrid linear amplifier can raise the SNR of CVQKD and tune between two types of performance for high-gain mode and high noise-reduction mode, therefore it can extend the maximal transmission distance while the entangled source is untrusted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengjun Ren ◽  
Shuai Yang ◽  
Adrian Wonfor ◽  
Ian White ◽  
Richard Penty

AbstractWe present an experimental demonstration of the feasibility of the first 20 + Mb/s Gaussian modulated coherent state continuous variable quantum key distribution system with a locally generated local oscillator at the receiver (LLO-CVQKD). To increase the signal repetition rate, and hence the potential secure key rate, we equip our system with high-performance, wideband devices and design the components to support high repetition rate operation. We have successfully trialed the signal repetition rate as high as 500 MHz. To reduce the system complexity and correct for any phase shift during transmission, reference pulses are interleaved with quantum signals at Alice. Customized monitoring software has been developed, allowing all parameters to be controlled in real-time without any physical setup modification. We introduce a system-level noise model analysis at high bandwidth and propose a new ‘combined-optimization’ technique to optimize system parameters simultaneously to high precision. We use the measured excess noise, to predict that the system is capable of realizing a record 26.9 Mb/s key generation in the asymptotic regime over a 15 km signal mode fibre. We further demonstrate the potential for an even faster implementation.


Sign in / Sign up

Export Citation Format

Share Document