scholarly journals Fixed-Time Synchronization Control of Delayed Dynamical Complex Networks

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1610
Author(s):  
Mei Liu ◽  
Binglong Lu ◽  
Zhanfeng Li ◽  
Haijun Jiang ◽  
Cheng Hu

Fixed-time synchronization problem for delayed dynamical complex networks is explored in this paper. Compared with some correspondingly existed results, a few new results are obtained to guarantee fixed-time synchronization of delayed dynamical networks model. Moreover, by designing adaptive controller and discontinuous feedback controller, fixed-time synchronization can be realized through regulating the main control parameter. Additionally, a new theorem for fixed-time synchronization is used to reduce the conservatism of the existing work in terms of conditions and the estimate of synchronization time. In particular, we obtain some fixed-time synchronization criteria for a type of coupled delayed neural networks. Finally, the analysis and comparison of the proposed controllers are given to demonstrate the validness of the derived results from one numerical example.

2021 ◽  
Author(s):  
Shiju Yang ◽  
Chuandong Li ◽  
Yu Li ◽  
Ting Yang ◽  
Bo Li

Abstract In this paper, the fixed-time bipartite synchronization problem for coupled delayed neural networks with signed graphs is discussed. Different from traditional neural networks, the interactions between nodes of delayed neural networks can be either collaborative or antagonistic. Furthermore, compared with the initial-condition based finite-time synchronization, the settling time is bounded by a constant within fixedtime regardless of the initial condition. It is worth noting that the fixed-time stable network for bipartite synchronization in this paper achieves more faster convergence than most existing publications. By applying constructing comparison system method, Lyapunov stability theory and inequality techniques, some sufficient criteria for fixed-time bipartite synchronization are obtained. Finally, two numerical examples are granted to display the performance of the obtained results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoliang Qian ◽  
Qian Liu ◽  
Qingbo Li ◽  
Qi Yang ◽  
Yuanyuan Wu ◽  
...  

This article investigates the fixed-time synchronization issue for linearly coupled complex networks with discontinuous nonidentical nodes by employing state-feedback discontinuous controllers. Based on the fixed-time stability theorem and linear matrix inequality techniques, novel conditions are proposed for concerned complex networks, under which the fixed-time synchronization can be realized onto any target node by using a set of newly designed state-feedback discontinuous controllers. To some extent, this article extends and improves some existing results on the synchronization of complex networks. In the final numerical example section, the Chua circuit network is introduced to indicate the effectiveness of our method by showing its fixed-timely synchronization results with the proposed control scheme.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Bin Yang ◽  
Xin Wang ◽  
Yongju Zhang ◽  
Yuhua Xu ◽  
Wuneng Zhou

This paper is mainly concerned with how nonlinear coupled one impacts synchronization dynamics of a class of nonlinear coupled Markovian switching multiweighted complex networks (NCMSMWCNs). Firstly, sufficient conditions of finite-time synchronization for a class of NCMSMWCNs and a class of linear coupled Markovian switching multiweighted complex networks (LCMSMWCNs) are investigated. Secondly, based on the derived results, how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs is analyzed from synchronization control rule. Thirdly, in order to further explore how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs, synchronization dynamics relationship of the NCMSMWCNs and the LCMSMWCNs is built. Furthermore, this relationship can also show how linear coupled one affects synchronization dynamics of the LCMSMWCNs. At last, numerical examples are provided to demonstrate the effectiveness of the obtained theory.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989131
Author(s):  
Peng Zhang ◽  
Yongzheng Cong ◽  
Di Wu ◽  
Guorong Zhang ◽  
Qi Tan

Fixed-time synchronization problem for a class of leader–follower multi-agent systems with second-order nonlinearity is studied in this article. A new fixed-time synchronization control algorithm is developed by effectively combining homogeneous system theory, Lyapunov stability theory, and fixed-time/finite-time control technology. The leader–follower multi-agent system is considered to achieve fixed-time synchronization control. Finally, numerical simulations including coordination control multiple pendulum robot systems and electric power networks are carried out to verify the control performance of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document