scholarly journals Quantum Information in Relativity: The Challenge of QFT Measurements

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 4
Author(s):  
Charis Anastopoulos ◽  
Ntina Savvidou

Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important. In this essay, we argue that a proper extension of quantum information theory into the relativistic domain requires the expression of all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a working and practicable theory of QFT measurements. We present the foundational problems in constructing such a theory, especially in relation to longstanding causality and locality issues in the foundations of QFT. Finally, we present the ongoing Quantum Temporal Probabilities program for constructing a measurement theory that (i) works, in principle, for any QFT, (ii) allows for a first- principles investigation of all relevant issues of causality and locality, and (iii) it can be directly applied to experiments of current interest.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. Blasone ◽  
F. Dell’Anno ◽  
S. De Siena ◽  
F. Illuminati

Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states.


Author(s):  
Arkady Plotnitsky

Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting a non-realist interpretation, in ‘the spirit of Copenhagen’, of quantum theory and quantum phenomena themselves. The article argues that the ‘events’ in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT.


2019 ◽  
Author(s):  
Θεοδώρα Κολιώνη

Η επιστήμη της κβαντικής πληροφορίας επιδιώκει την κατανόηση, στο ευρύτερο πλαίσιο της Κβαντομηχανικής, της πληροφορίας ως φυσικό αλλά και ως μαθηματικό εργαλείο. Έτσι, η κατανόηση των ιδιοτήτων της κβαντικής πληροφορίας (όπως π.χ. του εναγκαλισμού), κρίνεται απαραίτητη προϋπόθεση για την ανάπτυξη νέων κβαντικών τεχνολογιών. Στο πλαίσιο της διδακτορικής μου έρευνας ασχολήθηκα με α). την πλήρη κατανόηση και την περιγραφή της επικοινωνίας μεταξύ των απομακρυσμένων κβαντικών συστημάτων που αλληλεπιδρούν μέσω ενός κβαντικού πεδίου και β). την κατασκευή ενός θεωρητικού μοντέλου για την ακριβή περιγραφή του φαινομένου της μετάδοσης της πληροφορίας, η οποία δεν οδηγεί σε παραβίαση της αιτιότητας (Einstein causality). Για το σκοπό αυτό, στην παρούσα διατριβή μελετήθηκε το σύστημα των δύο εντοπισμένων ανιχνευτών (αρμονικών ταλαντωτών) που αλληλεπιδρούν μέσω ενός άμαζου βαθμωτού κβαντικού πεδίου, στην κατάσταση του κενού, μέσω μίας Unruh-DeWitt αλληλεπίδρασης. Το σύστημα αυτό είναι ισοδύναμο με ένα ανοικτό κβαντικό σύστημα (QBM model), όπου το πεδίο παίζει το ρόλο του περιβάλλοντος. Είναι ακριβώς επιλύσιμο και αποτελεί ένα μοντέλο κατάλληλο για την αντιμετώπιση θεμελιωδών προβλημάτων που αφορούν στις αλληλεπιδράσεις μεταξύ σωματιδίων και πεδίου, όπως το πρόβλημα της αιτιότητας (causality) και της τοπικότητας (locality) στις μετρήσεις κβαντικού πεδίου (quantum field measurements) που σχετίζονται και με τα πρόσφατα προτεινόμενα κβαντικά πειράματα στο διάστημα. Η ανάλυση της ακριβούς λύσης της χρονικής εξέλιξης του μοντέλου μας, οδήγησε στα ακόλουθα αποτελέσματα. i). Κοινές προσεγγίσεις που χρησιμοποιούνται για την μελέτη αντίστοιχων ανοικτών κβαντικών συστημάτων αποτυγχάνουν όταν η απόσταση μεταξύ των ανιχνευτών (συστημάτων) γίνεται ίση με την τάξη μεγέθους του χρόνου αποσύνθεσης (relaxation time) του συστήματος. Συγκεκριμένα, η μελέτη της δημιουργίας των συσχετισμών μεταξύ των απομακρυσμένων ανιχνευτών (συστημάτων) δεν περιγράφεται καλά από τη συνηθισμένη θεωρία διαταραχών (θεωρία διαταραχών 2ης τάξης) και την προσέγγιση Markov. ii). Υπάρχει μια μοναδική ασυμπτωτική κατάσταση στην οποία καταλήγει το υπό μελέτη σύστημα, η οποία είναι κατάσταση συσχετισμού (correlated state), όχι όμως κατάσταση εναγκαλισμού (entangled state), εκτός και αν η απόσταση μεταξύ των ανιχνευτών είναι τάξης μεγέθους του μήκους κύματος του ανταλλασσόμενου μεταξύ τους, κβάντου. iii). Τέλος, διαπιστώθηκε ότι η εξέλιξη των φαινομενικά εντοπισμένων παρατηρήσιμων μεγεθών είναι μη-αιτιακή. Το τελευταίο είναι μια σημαντική επίδειξη του προβλήματος των δύο ατόμων του Fermi, σε ένα σύστημα που μπορεί να επιλυθεί με ακρίβεια. Υποστηρίζουμε ότι η έννοια του εναγκαλισμού στα σχετικιστικά συστήματα, και ειδικότερα η μελέτη της φυσικής σημασίας της εξαγωγής του εναγκαλισμού από το κενό (Harvesting) απαιτεί επανακαθορισμό λόγω του προβλήματος της αιτιότητας. Το αποτέλεσμα της έρευνας αυτής, αναμένεται να συμβάλλει στην ανάπτυξη του τομέα της κβαντικής πληροφορίας, μέσα από τα αποτελέσματα που αφορούν στην κατανόηση της κβαντικής επικοινωνίαςσε μεγάλες αποστάσεις.


2021 ◽  
pp. 1-11
Author(s):  
Rosy Pradhan ◽  
Mohammad Rafique Khan ◽  
Prabir Kumar Sethy ◽  
Santosh Kumar Majhi

The field of optimization science is proliferating that has made complex real-world problems easy to solve. Metaheuristics based algorithms inspired by nature or physical phenomena based methods have made its way in providing near-ideal (optimal) solutions to several complex real-world problems. Ant lion Optimization (ALO) has inspired by the hunting behavior of antlions for searching for food. Even with a unique idea, it has some limitations like a slower rate of convergence and sometimes confines itself into local solutions (optima). Therefore, to enhance its performance of classical ALO, quantum information theory is hybridized with classical ALO and named as QALO or quantum theory based ALO. It can escape from the limitations of basic ALO and also produces stability between processes of explorations followed by exploitation. CEC2017 benchmark set is adopted to estimate the performance of QALO compared with state-of-the-art algorithms. Experimental and statistical results demonstrate that the proposed method is superior to the original ALO. The proposed QALO extends further to solve the model order reduction (MOR) problem. The QALO based MOR method performs preferably better than other compared techniques. The results from the simulation study illustrate that the proposed method effectively utilized for global optimization and model order reduction.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Liron Levy ◽  
Moshe Goldstein

In recent years, tools from quantum information theory have become indispensable in characterizing many-body systems. In this work, we employ measures of entanglement to study the interplay between disorder and the topological phase in 1D systems of the Kitaev type, which can host Majorana end modes at their edges. We find that the entanglement entropy may actually increase as a result of disorder, and identify the origin of this behavior in the appearance of an infinite-disorder critical point. We also employ the entanglement spectrum to accurately determine the phase diagram of the system, and find that disorder may enhance the topological phase, and lead to the appearance of Majorana zero modes in systems whose clean version is trivial.


Sign in / Sign up

Export Citation Format

Share Document