scholarly journals Preparation and Identification of BaFe2O4 Nanoparticles by the Sol–Gel Route and Investigation of Its Microwave Absorption Characteristics at Ku-Band Frequency Using Silicone Rubber Medium

Proceedings ◽  
2018 ◽  
Vol 2 (17) ◽  
pp. 5234
Author(s):  
Reza Peymanfar ◽  
Mitra Rahmanisaghieh ◽  
Arezoo Ghaffari ◽  
Yousef Yassi

In the last decade, spinel structures have been widely explored due to widespread applications in antibacterial nanocomposites, memory devices, catalysts, photocatalysts, high-frequency devices, and electromagnetic absorbing materials. In this study, BaFe2O4 spinel structures were synthesized through the sol–gel method using a low sintering temperature and were identified by vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and vector network analyzer (VNA) analysis. Results showed that uniform and pure crystal structures of BaFe2O4 nanoparticles were prepared based on the sol–gel method. Finally, BaFe2O4 nanoparticles were blended by silicone rubber to characterize the microwave absorption properties of the nanocomposite at the ku-band frequency. According to the VNA results, the BaFe2O4/silicone rubber nanocomposite with 1.75 mm thickness absorbed more than 94.38% of microwave irradiation along the ku-band frequency and the maximum reflection loss of the BaFe2O4/silicone rubber nanocomposite was 51.67 dB at 16.1 GHz.

Proceedings ◽  
2018 ◽  
Vol 2 (17) ◽  
pp. 1155 ◽  
Author(s):  
Reza Peymanfar ◽  
Farzaneh Azadi ◽  
Yousef Yassi

Recently, using microwave devices that emit electromagnetic waves and enhance the convenience of life have increased; however, they can be harmful to the environment. In this study, CuFe2O4 nanoparticles were prepared through the conventional sol-gel procedure and then were characterized by X-ray powder diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and vector network analyzer (VNA) using S parameters. Results illustrated that pure crystal structure of magnetic nanoparticles has been synthesized by the sol-gel method with magnetic saturation (Ms) of 22 emu/g. Finally, CuFe2O4 nanoparticles were composited by silicone rubber to investigate its microwave absorption properties. Results showed that the CuFe2O4/silicone rubber nanocomposite absorbed more than 94.87% of the microwave irradiation at ku-band frequency with 1.7 mm thickness and the maximum reflection loss was −60.38 dB at 16.1 GHz. Magnetic and dielectric properties of the CuFe2O4 nanoparticles and silicone rubber polymeric matrix in the nanocomposite demonstrated desirable microwave absorption properties.


2012 ◽  
Vol 56 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Min Zhang ◽  
QiangChun Liu ◽  
ZhenFa Zi ◽  
YuQiang Dai ◽  
XueBin Zhu ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (17) ◽  
pp. 1156
Author(s):  
Reza Peymanfar ◽  
Niloofar Khodamoradipoor

Lately, silicone rubber, because of the desirable permittivity on the one hand, and various applications in the implants, membranes, solar cells, sensors, semiconductor devices, high frequency devices, photothermal therapy methods, acoustic metamaterials, and insulator materials on the other hand, has attracted considerable attention. In this research, CuCr2O4 nanoparticles were prepared according to the sol–gel method and then were identified by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). Results showed that monophase crystal structure with identical morphology of CuCr2O4 nanoparticles has been synthesized. Finally, CuCr2O4 nanoparticles and silicone rubber were composited and then microwave absorbing properties of the CuCr2O4/silicone rubber nanocomposite were investigated by vector network analyzer (VNA), exhibiting 48.56 dB microwave attenuation for the CuCr2O4/silicone rubber nanocomposite with 2.6 mm thickness at 10.9 GHz frequency, while having more than 92.99% microwave absorption along the x-band frequency.


2015 ◽  
Vol 1119 ◽  
pp. 96-100
Author(s):  
Mohd Syafiq Zulfakar ◽  
Huda Abdullah ◽  
Wan Nasarudin Wan Jalal ◽  
Zalita Zainuddin ◽  
Sahbudin Shaari

Zinc aluminate (ZnAl2O4) and zinc ferrite (ZnFe2O4) nanocrystalline structures dispersed into SiO2 matrix were prepared by sol-gel method. Phase formation of ZnAl2O4 and ZnFe2O4 was confirmed by X-ray diffraction (XRD) analysis. The crystallite sizes was determine using Scherer’s equation from the broadening of dominant peak at (311) plane. It was found the crystallite size of both compound decreased due to the decrement compositions of Zn2+ ion and Al3+ / Fe3+ ions. The crystallite sizes for ZnAl2O4 and ZnFe2O4 was calculated to be around ~ 14.16 – 11.27 nm and ~ 11.27 – 4.72 nm, respectively. FTIR analysis was done to determine the formation of spinel structures. FTIR results analysis confirmed that the formation of spinel structure where it has been observed that the bands around 800 cm-1 was associated to the vibrations of aluminum-oxygen and metal-oxygen-aluminum bonds. This characteristic was identified to the formation of zinc aluminate spinel structure. The optical properties have been done to determine the energy bandgap of ZnAl2O4 and ZnFe2O4 samples. The Uv-Visible absorption spectra have been done within wavelength 300 – 800 nm and the graph was plotted into the Tauc plot. This new dielectric material was purposed to improve the value of dielectric permittivity with addition of SiO2 where it can be applied as microwave dielectric material without changing the original spinel structures.


2013 ◽  
Vol 663 ◽  
pp. 377-380 ◽  
Author(s):  
Wen Juan Gu ◽  
Ying Li ◽  
Bang Gui He

A new kind of microsphere filler was synthesized with octyltrimethoxysilane (WD13) and tetraethoxysilane (TEOS) by sol-gel method. The morphology of the filler was measured by TEM. The so synthesized spheres were added into the silicone rubber. Both the strain-stress and the water contact angle of the silicone rubber were researched. The results showed that both the mechanical property and the hydrophobic performance of the composite were improved compared with the blank specimen. The possible strengthen mechanism of the filler was discussed. The neotype silica sphere researched in this paper could react with the silicone rubber chains which perfects the vulcanization of the silicone rubber. This kind of sphere filler exhibits many merits for usage as filler.


2011 ◽  
Vol 474-476 ◽  
pp. 1044-1048
Author(s):  
Zheng Xiong ◽  
Zhu Xi ◽  
Zhang Li Jun

Hexagonal W-type ferrite BaZn0.6Co1.4Fe16O27 was prepared by the sol-gel method. The formation, microstructure, element composition and phases were analyzed by TG-DTA, SEM, EDS and XRD. The electromagnetic parameters and microwave absorption capability were measured by the microwave vector network analyzer. The results showed that the reflection loss of the ferrite BaZn0.6Co1.4Fe16O27 in the spectrum of 8-18GHz came up to -10dB and came up to -20dB in the spectrum of 9.5-16.4GHz.


Sign in / Sign up

Export Citation Format

Share Document