scholarly journals Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 688
Author(s):  
Kento Takabayashi ◽  
Hirokazu Tanaka ◽  
Katsumi Sakakibara

This research provides a study on a smart body area network (SmartBAN) physical layer (PHY), as an of the Internet of medical things (IoMT) technology, for an advanced human monitoring system in industrial use. The SmartBAN provides a new PHY and a medium access control (MAC) layer, improving its performance and providing very low-latency emergency information transmission with low energy consumption compared with other wireless body area network (WBAN) standards. On the other hand, IoMT applications are expected to become more advanced with smarter wearable devices, such as augmented reality-based human monitoring and work support in a factory. Therefore, it is possible to develop more advanced human monitoring systems for industrial use by combining the SmartBAN with multimedia devices. However, the SmartBAN PHY is not designed to transmit multimedia information such as audio and video. To address this issue, multilevel phase shift keying (PSK) modulation is applied to the SmartBAN PHY, and the symbol rate is improved by setting the roll-off rate appropriately to realize the system. The numerical results show that a sufficient link budget, receiver sensitivity and fade margin were obtained even when those approaches were applied to the SmartBAN PHY. The results indicate that these techniques are required for high-quality audio or video transmission, as well as vital sign data transmission, in a SmartBAN.

2011 ◽  
Vol 17 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Raluca Marin-Perianu ◽  
Mihai Marin-Perianu ◽  
Paul Havinga ◽  
Simon Taylor ◽  
Rezaul Begg ◽  
...  

Wireless body area network (WBAN) being a sub-domain of wireless sensor network (WSN) is a new emerging technology for healthcare applications. A WBAN consists of low-power tiny wireless nodes placed on or around the human body that continuously observe vital health signs of a patient. These sensors are capable of sending information of physiological parameters taken from human body to other devices for diagnosis procedures and prescription. WBAN provides ubiquitous healthcare services and enables greater mobility without restricting human normal activities, as the medical personnel can observe the patient health conditions based on the data received through the wireless network. This research work provides a WBAN based healthcare monitoring system that can provide the electrocardiogram (ECG), heartbeat, and human body temperature information. The wireless transmission of the received data from human body is performed by using Zigbee IEEE802.15.4 communication standard. The physiological data will be communicated to remote medical server where data is stored and analyzed. In case any disease is diagnosed, medical personnel can provide immediate assistance to the patients.


Sign in / Sign up

Export Citation Format

Share Document