scholarly journals Dual Image Deblurring Using Deep Image Prior

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2045
Author(s):  
Chang Jong Shin ◽  
Tae Bok Lee ◽  
Yong Seok Heo

Blind image deblurring, one of the main problems in image restoration, is a challenging, ill-posed problem. Hence, it is important to design a prior to solve it. Recently, deep image prior (DIP) has shown that convolutional neural networks (CNNs) can be a powerful prior for a single natural image. Previous DIP-based deblurring methods exploited CNNs as a prior when solving the blind deburring problem and performed remarkably well. However, these methods do not completely utilize the given multiple blurry images, and have limitations of performance for severely blurred images. This is because their architectures are strictly designed to utilize a single image. In this paper, we propose a method called DualDeblur, which uses dual blurry images to generate a single sharp image. DualDeblur jointly utilizes the complementary information of multiple blurry images to capture image statistics for a single sharp image. Additionally, we propose an adaptive L2_SSIM loss that enhances both pixel accuracy and structural properties. Extensive experiments show the superior performance of our method to previous methods in both qualitative and quantitative evaluations.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1856
Author(s):  
Shuhan Sun ◽  
Zhiyong Xu ◽  
Jianlin Zhang

Blind image deblurring is a well-known ill-posed inverse problem in the computer vision field. To make the problem well-posed, this paper puts forward a plain but effective regularization method, namely spectral norm regularization (SN), which can be regarded as the symmetrical form of the spectral norm. This work is inspired by the observation that the SN value increases after the image is blurred. Based on this observation, a blind deblurring algorithm (BDA-SN) is designed. BDA-SN builds a deblurring estimator for the image degradation process by investigating the inherent properties of SN and an image gradient. Compared with previous image regularization methods, SN shows more vital abilities to differentiate clear and degraded images. Therefore, the SN of an image can effectively help image deblurring in various scenes, such as text, face, natural, and saturated images. Qualitative and quantitative experimental evaluations demonstrate that BDA-SN can achieve favorable performances on actual and simulated images, with the average PSNR reaching 31.41, especially on the benchmark dataset of Levin et al.



Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2874 ◽  
Author(s):  
Ruihua Wang ◽  
Guorui Ma ◽  
Qianqing Qin ◽  
Qiang Shi ◽  
Juntao Huang

Unmanned aerial vehicles (UAVs) have become an important technology for acquiring high-resolution remote sensing images. Because most space optical imaging systems of UAVs work in environments affected by vibrations, the optical axis motion and image plane jitter caused by these vibrations easily result in blurring of UAV images. In the paper; we propose an advanced UAV image deblurring method based on a discriminative model comprising a classifier for blurred and sharp UAV images which is embedded into the maximum a posteriori framework as a regularization term that constantly optimizes ill-posed problem of blind image deblurring to obtain sharper UAV images. Compared with other methods, the results show that in image deblurring experiments using both simulated and real UAV images the proposed method delivers sharper images of various ground objects.





2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yayuan Feng ◽  
Yu Shi ◽  
Dianjun Sun

The denoising and deblurring of Poisson images are opposite inverse problems. Single image deblurring methods are sensitive to image noise. A single noise filter can effectively remove noise in advance, but it also damages blurred information. To simultaneously solve the denoising and deblurring of Poissonian images better, we learn the implicit deep image prior from a single degraded image and use the denoiser as a regularization term to constrain the latent clear image. Combined with the explicit L0 regularization prior of the image, the denoising and deblurring model of the Poisson image is established. Then, the split Bregman iteration strategy is used to optimize the point spread function estimation and latent clear image estimation. The experimental results demonstrate that the proposed method achieves good restoration results on a series of simulated and real blurred images with Poisson noise.



2013 ◽  
Vol 24 (5) ◽  
pp. 1143-1154 ◽  
Author(s):  
Shu TANG ◽  
Wei-Guo GONG ◽  
Jian-Hua ZHONG


2020 ◽  
Vol 102 ◽  
pp. 102736 ◽  
Author(s):  
Zhenhua Xu ◽  
Huasong Chen ◽  
Zhenhua Li




2019 ◽  
Vol 9 (16) ◽  
pp. 3274
Author(s):  
Han ◽  
Kan

The edges of images are less sparse when images become blurred. Selecting effective image edges is a vital step in image deblurring, which can help us to build image deblurring models more accurately. While global edges selection methods tend to fail in capturing dense image structures, the edges are easy to be affected by noise and blur. In this paper, we propose an image deblurring method based on local edges selection. The local edges are selected by the difference between the bright channel and the dark channel. Then a novel image deblurring model including local edges regularization term is established. The obtaining of a clear image and blurring kernel is based on alternating iterations, in which the clear image is obtained by the alternating direction method of multipliers (ADMM). In the experiments, tests are carried out on gray value images, synthetic color images and natural color images. Compared with other state-of-the-art blind image deblurring methods, the visualization results and performance verify the effectiveness of our method.



Sign in / Sign up

Export Citation Format

Share Document