noise filter
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Zhiwen Yan ◽  
Ying Chen ◽  
Jinlong Song ◽  
Jia Zhu ◽  
Jianbo Li

Abstract Pit and fissure sealant is for children aged seven to twelve years to prevent molars from becoming caries. In this paper, we propose a new detection framework to identify whether children need pit and fissure sealing. We divide the framework into two parts: molar detection and molar classification. According to the characteristics of teeth, we propose to use the clustering method to filter the bounding box in the object detection part. In the region divided by clustering, we only keep one detection frame in the same category. In the classification part, we propose a noise filtering layer based on wavelet transform for feature extraction. We map the training samples to another space in the training process based on metric learning to increase the distance between categories and improve the accuracy of classification.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 528
Author(s):  
David Opeoluwa Oyewola ◽  
Emmanuel Gbenga Dada ◽  
Sanjay Misra ◽  
Robertas Damaševičius

The application of machine learning techniques to the epidemiology of COVID-19 is a necessary measure that can be exploited to curtail the further spread of this endemic. Conventional techniques used to determine the epidemiology of COVID-19 are slow and costly, and data are scarce. We investigate the effects of noise filters on the performance of machine learning algorithms on the COVID-19 epidemiology dataset. Noise filter algorithms are used to remove noise from the datasets utilized in this study. We applied nine machine learning techniques to classify the epidemiology of COVID-19, which are bagging, boosting, support vector machine, bidirectional long short-term memory, decision tree, naïve Bayes, k-nearest neighbor, random forest, and multinomial logistic regression. Data from patients who contracted coronavirus disease were collected from the Kaggle database between 23 January 2020 and 24 June 2020. Noisy and filtered data were used in our experiments. As a result of denoising, machine learning models have produced high results for the prediction of COVID-19 cases in South Korea. For isolated cases after performing noise filtering operations, machine learning techniques achieved an accuracy between 98–100%. The results indicate that filtering noise from the dataset can improve the accuracy of COVID-19 case prediction algorithms.


2021 ◽  
Author(s):  
Shuaijun Li ◽  
Jia Lu

Abstract Self-training algorithm can quickly train an supervised classifier through a few labeled samples and lots of unlabeled samples. However, self-training algorithm is often affected by mislabeled samples, and local noise filter is proposed to detect the mislabeled samples. Nevertheless, current local noise filters have the problems: (a) Current local noise filters ignore the spatial distribution of the nearest neighbors in different classes. (b) They can’t perform well when mislabeled samples are located in the overlapping areas of different classes. To solve the above challenges, a new self-training algorithm based on density peaks combining globally adaptive multi-local noise filter (STDP-GAMNF) is proposed. Firstly, the spatial structure of data set is revealed by density peak clustering, and it is used for helping self-training to label unlabeled samples. In the meantime, after each epoch of labeling, GAMLNF can comprehensively judge whether a sample is a mislabeled sample from multiple classes or not, and will reduce the influence of edge samples effectively. The corresponding experimental results conducted on eighteen real-world data sets demonstrate that GAMLNF is not sensitive to the value of the neighbor parameter k, and it can be adaptive to find the appropriate number of neighbors of each class.


Author(s):  
Wai Ti Chan

Previous research by the author has the theory that histograms of second-order derivatives are capable of determining differences between pixels in MRI images for the purpose of noise reduction without having to refer to ground truth. However, the methodology of the previous research resulted in significant false negatives in determining which pixel is affected by noise. The theory has been revised in this article through the introduction of an additional Laplace curve, leading to comparisons between the histogram profile and two curves instead of just one. The revised theory is that differences between the first curve and the histogram profile and the differences between the second curve and the profile can determine which pixels are to be selected for filtering in order to improve image clarity while minimizing blurring. The revised theory is tested with a modified average filter versus a generic average filter, with PSNR and SSIM for scoring. The results show that for most of the sample MRI images, the theory of pixel selection is more reliable at higher levels of noise but not as reliable at preventing blurring at low levels of noise.


Author(s):  
Bohan Feng ◽  
Xi Cheng ◽  
Jingjing Liu ◽  
Mingyu Wang ◽  
Wenhong Li ◽  
...  

2021 ◽  
Author(s):  
Casey Weisenberger ◽  
David Hathcock ◽  
Michael Hinczewski

Accurate propagation of signals through stochastic biochemical networks involves significant expenditure of cellular resources. The same is true for regulatory mechanisms that suppress fluctuations in biomolecular populations. Wiener-Kolmogorov (WK) optimal noise filter theory, originally developed for engineering problems, has recently emerged as a valuable tool to estimate the maximum performance achievable in such biological systems for a given metabolic cost. However, WK theory has one assumption that potentially limits its applicability: it relies on a linear, continuum description of the reaction dynamics. Despite this, up to now no explicit test of the theory in nonlinear signaling systems with discrete molecular populations has ever seen performance beyond the WK bound. Here we report the first direct evidence the bound being broken. To accomplish this, we develop a theoretical framework for multi-level signaling cascades, including the possibility of feedback interactions between input and output. In the absence of feedback, we introduce an analytical approach that allows us to calculate exact moments of the stationary distribution for a nonlinear system. With feedback, we rely on numerical solutions of the system's master equation. The results show WK violations in two common network motifs: a two-level signaling cascade and a negative feedback loop. However the magnitude of the violation is biologically negligible, particularly in the parameter regime where signaling is most effective. The results demonstrate that while WK theory does not provide strict bounds, its predictions for performance limits are excellent approximations, even for nonlinear systems.


Author(s):  
JaeGu Lee ◽  
Yeo Min Yoon ◽  
Seon Geol Kim ◽  
Chang Woo Ha ◽  
Seong Baek Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document