scholarly journals A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2753
Author(s):  
Bo Huang ◽  
Minghui Hu ◽  
Lunguo Chen ◽  
Guoqing Jin ◽  
Shuiping Liao ◽  
...  

Considering that use of measured current as input of a battery model may cause distortion of the model due to low accuracy of the on-board current sensor and that power can be used to indicate energy transmission in an electric vehicle model, the power input internal resistance model is widely used in simulation of whole electric vehicles. However, since no consideration is given to battery polarization and electro-thermal coupling characteristics, the foregoing model cannot be used to describe the internal temperature change of batteries under working conditions. Three contributions are made in the present study: (1) ternary lithium-ion batteries were taken as the research objects and a second-order RC equivalent circuit model with power as the input was established in the present study; (2) A dynamic heat generation rate model suitable for RC equivalent circuits was built based on coupled electrical and thermal characteristics of lithium-ion batteries; (3) An electric model and a two-state equivalent thermal network model were further built and combined by using the heat generation rate model to form a power input electro-thermal model. Parameters of the model so formed were identified offline, and the battery model was verified with respect to accuracy under seven working conditions. The results show that the maximum root mean square error in voltage estimation, current estimation, and surface temperature estimation is 19.38 mV, 9.51 mA, and 0.19 °C respectively, which indicates that the power input electro-thermal model can describe the electrical and thermal dynamic behavior of batteries more accurately and comprehensively than the traditional power input internal resistance model.

2018 ◽  
Vol 42 (14) ◽  
pp. 4481-4498 ◽  
Author(s):  
Yi Xie ◽  
Wei Li ◽  
Yong Yang ◽  
Fei Feng

2019 ◽  
Vol 166 (13) ◽  
pp. A3059-A3071 ◽  
Author(s):  
Ngoc Tham Tran ◽  
Troy Farrell ◽  
Mahinda Vilathgamuwa ◽  
San Shing Choi ◽  
Yang Li

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 56811-56822 ◽  
Author(s):  
Xiaojun Tan ◽  
Yuqing Tan ◽  
Di Zhan ◽  
Ze Yu ◽  
Yuqian Fan ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2856 ◽  
Author(s):  
Lijun Zhang ◽  
Zhongqiang Mu ◽  
Xiangyu Gao

At present, a variety of standardized 18650 commercial cylindrical lithium-ion batteries are widely used in new energy automotive industries. In this paper, the Panasonic NCR18650PF cylindrical lithium-ion batteries were studied. The NEWWARE BTS4000 battery test platform is used to test the electrical performances under temperature, vibration and temperature-vibration coupling conditions. Under the temperature conditions, the discharge capacity of the same battery at the low temperature was only 85.9% of that at the high temperature. Under the vibration condition, mathematical statistics methods (the Wilcoxon Rank-Sum test and the Kruskal-Wallis test) were used to analyze changes of the battery capacity and the internal resistance. Changes at a confidence level of 95% in the capacity and the internal resistance were considered to be significantly different between the vibration conditions at 5 Hz, 10 Hz, 20 Hz and 30 Hz versus the non-vibration condition. The internal resistance of the battery under the Y-direction vibration was the largest, and the difference was significant. Under the temperature-vibration coupling conditions, the orthogonal table L9 (34) was designed. It was found out that three factors were arranged in order of temperature, vibration frequency and vibration direction. Among them, the temperature factor is the main influencing factor affecting the performance of lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document