scholarly journals Non-Orthogonal Resource Sharing Optimization for D2D Communication in LTE-A Cellular Networks: A Fractional Frequency Reuse-Based Approach

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 238 ◽  
Author(s):  
Devarani Devi Ningombam ◽  
Seokjoo Shin

To handle the fast-growing demand for high data rate applications, the capacity of cellular networks should be reinforced. However, the available radio resources in cellular networks are scarce, and their formulation is expensive. The state-of-the art solution to this problem is a new local networking technology known as the device-to-device (D2D) communication. D2D communications have great capability in achieving outstanding performance by reusing the existing uplink cellular channel resources. In D2D communication, two devices in close proximity can communicate directly without traversing data traffic through the evolved-NodeB (eNB). This results in a reduced traffic load to the eNB, reduced end-to-end delay, and improved spectral efficiency and system performance. However, enabling D2D communication in an LTE-Advanced (LTE-A) cellular network causes severe interference to traditional cellular users and D2D pairs. To maintain the quality of service (QoS) of the cellular users and D2D pairs and reduce the interference, we propose a distance-based resource allocation and power control scheme using fractional frequency reuse (FFR) technique. We calculate the system outage probability, total throughput and spectrum efficiency for both cellular users and D2D pairs in terms of their signal-to-interference-plus-noise ratio (SINR). Our simulation results show that the proposed scheme reduces interference significantly and improves system performance compared to the random resource allocation (RRA) and resource allocation (RA) without sectorization scheme.

Author(s):  
Anitha S Sastry ◽  
Akhila S

This article describes how a multi user cellular system insists on having increase in the spectral efficiency for the number of users and base stations. As far as cellular structures are concerned, the users at the edges experience inter cellular interference (ICI) than the users at the cell center. This is due to lack of resource allocation at cell edges. To improve the throughput at the edges a technique called Fractional Frequency Reuse (FFR) is employed. This article explores the Dynamic FFR(DFFR) in OFDMA system to improve the overall throughput.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 440 ◽  
Author(s):  
Devarani Devi Ningombam ◽  
Seokjoo Shin

The sum throughput of a cellular network can be improved when nearby devices employ direct communications using a resource sharing technique. Multicast device-to-device (M-D2D) communication is a promising solution to accommodate higher transmission rates. In an M-D2D communication, a multicast group is formed by considering a transmitter that can transmit the same information to multiple receivers by considering the transmission link conditions. In this paper, we focus on the uplink interference generated due to the non-orthogonal sharing of resources between the cellular users and M-D2D groups. To mitigate the interference, we propose a spectrum reuse-based resource allocation and power control scheme for M-D2D communication underlaying an uplink cellular network. We formulate the throughput optimization problem by considering the fractional frequency reuse (FFR) method within a multicell cellular network. In addition, a metaheuristic-tabu search algorithm is developed that maximizes the probability of finding optimal solutions by minimizing uplink interference. To analyze fairness resource distribution among users, we finally consider Jain’s fairness index. Simulation results show that the proposed scheme can improve the coverage probability, success rate, spectral efficiency, and sum throughput of the network, compared with a random resource allocation scheme without a metaheuristic-tabu search algorithm.


Sign in / Sign up

Export Citation Format

Share Document