scholarly journals Evolutionary-Fuzzy-Integral-Based Convolutional Neural Networks for Facial Image Classification

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 997 ◽  
Author(s):  
Lin ◽  
Lin ◽  
Sun ◽  
Wang

Various optimization methods and network architectures are used by convolutional neural networks (CNNs). Each optimization method and network architecture style have their own advantages and representation abilities. To make the most of these advantages, evolutionary-fuzzy-integral-based convolutional neural networks (EFI-CNNs) are proposed in this paper. The proposed EFI-CNNs were verified by way of face classification of age and gender. The trained CNNs’ outputs were set as inputs of a fuzzy integral. The classification results were operated using either Sugeno or Choquet output rules. The conventional fuzzy density values of the fuzzy integral were decided by heuristic experiments. In this paper, particle swarm optimization (PSO) was used to adaptively find optimal fuzzy density values. To combine the advantages of each CNN type, the evaluation of each CNN type in EFI-CNNs is necessary. Three CNN structures, AlexNet, very deep convolutional neural network (VGG16), and GoogLeNet, and three databases, computational intelligence application laboratory (CIA), Morph, and cross-age celebrity dataset (CACD2000), were used in experiments to classify age and gender. The experimental results show that the proposed method achieved 5.95% and 3.1% higher accuracy, respectively, in classifying age and gender.

Author(s):  
Insha Rafique ◽  
Awais Hamid ◽  
Sheraz Naseer ◽  
Muhammad Asad ◽  
Muhammad Awais ◽  
...  

Author(s):  
Mohammed Abdulla Salim Al Husaini ◽  
Mohamed Hadi Habaebi ◽  
Teddy Surya Gunawan ◽  
Md Rafiqul Islam ◽  
Elfatih A. A. Elsheikh ◽  
...  

AbstractBreast cancer is one of the most significant causes of death for women around the world. Breast thermography supported by deep convolutional neural networks is expected to contribute significantly to early detection and facilitate treatment at an early stage. The goal of this study is to investigate the behavior of different recent deep learning methods for identifying breast disorders. To evaluate our proposal, we built classifiers based on deep convolutional neural networks modelling inception V3, inception V4, and a modified version of the latter called inception MV4. MV4 was introduced to maintain the computational cost across all layers by making the resultant number of features and the number of pixel positions equal. DMR database was used for these deep learning models in classifying thermal images of healthy and sick patients. A set of epochs 3–30 were used in conjunction with learning rates 1 × 10–3, 1 × 10–4 and 1 × 10–5, Minibatch 10 and different optimization methods. The training results showed that inception V4 and MV4 with color images, a learning rate of 1 × 10–4, and SGDM optimization method, reached very high accuracy, verified through several experimental repetitions. With grayscale images, inception V3 outperforms V4 and MV4 by a considerable accuracy margin, for any optimization methods. In fact, the inception V3 (grayscale) performance is almost comparable to inception V4 and MV4 (color) performance but only after 20–30 epochs. inception MV4 achieved 7% faster classification response time compared to V4. The use of MV4 model is found to contribute to saving energy consumed and fluidity in arithmetic operations for the graphic processor. The results also indicate that increasing the number of layers may not necessarily be useful in improving the performance.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 328 ◽  
Author(s):  
Khalil Khan ◽  
Muhammad Attique ◽  
Rehan Ullah Khan ◽  
Ikram Syed ◽  
Tae-Sun Chung

Human face image analysis is an active research area within computer vision. In this paper we propose a framework for face image analysis, addressing three challenging problems of race, age, and gender recognition through face parsing. We manually labeled face images for training an end-to-end face parsing model through Deep Convolutional Neural Networks. The deep learning-based segmentation model parses a face image into seven dense classes. We use the probabilistic classification method and created probability maps for each face class. The probability maps are used as feature descriptors. We trained another Convolutional Neural Network model by extracting features from probability maps of the corresponding class for each demographic task (race, age, and gender). We perform extensive experiments on state-of-the-art datasets and obtained much better results as compared to previous results.


Author(s):  
Héctor A. Sánchez-Hevia ◽  
Roberto Gil-Pita ◽  
Manuel Utrilla-Manso ◽  
Manuel Rosa-Zurera

Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


Sign in / Sign up

Export Citation Format

Share Document