scholarly journals False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1167 ◽  
Author(s):  
Yeunghak Lee ◽  
Jaechang Shim

Fire must be extinguished early, as it leads to economic losses and losses of precious lives. Vision-based methods have many difficulties in algorithm research due to the atypical nature fire flame and smoke. In this study, we introduce a novel smoke detection algorithm that reduces false positive detection using spatial and temporal features based on deep learning from factory installed surveillance cameras. First, we calculated the global frame similarity and mean square error (MSE) to detect the moving of fire flame and smoke from input surveillance cameras. Second, we extracted the fire flame and smoke candidate area using the deep learning algorithm (Faster Region-based Convolutional Network (R-CNN)). Third, the final fire flame and smoke area was decided by local spatial and temporal information: frame difference, color, similarity, wavelet transform, coefficient of variation, and MSE. This research proposed a new algorithm using global and local frame features, which is well presented object information to reduce false positive based on the deep learning method. Experimental results show that the false positive detection of the proposed algorithm was reduced to about 99.9% in maintaining the smoke and fire detection performance. It was confirmed that the proposed method has excellent false detection performance.

2018 ◽  
Vol 7 (4.44) ◽  
pp. 177 ◽  
Author(s):  
Yeunghak Lee ◽  
Israfil Ansari ◽  
Jaechang Shim

In this paper, we propose a new algorithm to detect rear-approaching vehicle using frame structure similarity based on deep learning algorithm for use in agricultural machinery systems. The commonly used deep learning models well detect various types of vehicles and detect the shapes of vehicles from various camera angles. However, since the vehicle detection system for agricultural machinery needs to detect only a vehicle approaching from the rear, when a general deep learning model is used, a false positive is generated by a vehicle running on the opposite side (passing vehicle). In this paper, first, we use Faster R-CNN model that shows excellent accuracy rate in deep learning for vehicle detection. Second, we proposed an algorithm that uses the structural similarity and the root mean square comparison method for the region of interest(vehicles area) which is detected by Faster R-CNN between the coming vehicle and the passing vehicle. Experimental results show that the proposed method has a detection rate of 98.2% and reduced the false positive values, which is superior to general deep learning method.  


2021 ◽  
Author(s):  
Yu Cheng ◽  
HongGui Deng ◽  
YuXin Feng ◽  
JunJiang Xiang

Abstract Welding defects not only bring several economic losses to enterprises and individuals but also threatens peoples lives. We propose a deep learning model, where the data-trained deep learning algorithm is employed to detect the weld defects, and the Convolutional Neural Networks (CNNs) are utilized to recognize the image features. The Transfer Learning (TL) is adopted to reduce the training time via simple adjustments and hyperparameter regulations. The designed deep learning-based model is compared with other classic models to prove its effectiveness in weld defect detection and image recognition further. The results show this model can accurately identify weld defects and eliminates the complexity of manually extracting features, reaching a recognition accuracy of 92.54%. Hence, the reliability and automation of detection and recognition is improved signifificantly. Actual application also verififies the effectiveness of TL in weld defect detection and image defect recognition. Therefore, our research results can provide theoretical and practical references for effificient automatic detection of steel plates, cost reduction, and the high-quality development of iron and steel enterprises.Index Terms - convolutional neural network, deep learning, image detect recognition, transfer learning, weld defect detection


Sign in / Sign up

Export Citation Format

Share Document