image defect
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 30)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Long Luo ◽  
Rukuo Ma ◽  
Yuan Li ◽  
Fangnan Yang ◽  
Zhanfei Qiu

Detection of substation equipment can promptly and effectively discover equipment overheating defects and prevent equipment failures. Traditional manual diagnosis methods are difficult to deal with the massive infrared images generated by the autonomous inspection of substation robots and drones. At present, most of the infrared image defect recognition is based on traditional machine learning algorithms, with low recognition accuracy and poor generalization capability. Therefore, this paper develops a method for identifying infrared defects of substation equipment based on the improvement of traditional ones. First, based on the Faster RCNN, target detection is performed on 6 types of substation equipment including bushings, insulators, wires, voltage transformers, lightning rods, and circuit breakers to achieve precise positioning of the equipment. Afterwards, different classes are identified based on the sparse representation-based classification (SRC), so the actual label of the input sample can be obtained. Finally, based on the temperature threshold discriminant algorithm, defects are identified in the equipment area. The measured infrared images are used for experiments. The average detection accuracy achieved by the proposed method for the 6 types of equipment reaches 92.34%. The recognition rate of different types of equipment is 98.57%, and the defect recognition accuracy reaches 88.75%. The experimental results show the effectiveness and accuracy of the proposed method.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012020
Author(s):  
Jiawei HUANG ◽  
Caixia BI ◽  
Jiayue LIU ◽  
Shaohua DONG

Abstract The existing technology of automatic classification and recognition of welding negative images by computer is difficult to achieve a multiple classification defect recognition while maintaining a high recognition accuracy, and the developed automatic recognition model of negative image defect cannot meet the actual needs of the field. Therefore, the convolutional neural network (CNN)-based intelligent recognition algorithm for negative image of weld defects is proposed, and a B/S (Browser/Server) architecture of weld defect feature image database combined with CNN is established subsequently, which converted from the existing CNN by the migration learning method. It makes full use of the negative big data and simplifies the algorithm development process, so that the recognition algorithm has a better generalization ability and the training algorithm accuracy of 97.18% achieved after training. The results of the comparison experiments with traditional recognition algorithms show that the CNN-based intelligent recognition algorithm for defective weld negatives has an accuracy of 92.31% for dichotomous defects, which is significantly better than the traditional recognition algorithm, the established recognition algorithm effectively improving the recognition accuracy and achieving multi-category defect recognition. At the same time, the CNN-based defect recognition method was established by combining the image segmentation algorithm and the defect intelligent recognition algorithm, which was applied to the actual negative images in the field with good results, further verifying the feasibility of CNN-based intelligent recognition algorithm in the field of defect recognition of welding negative images.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bangchao Liu ◽  
Youping Chen ◽  
Jingming Xie ◽  
Bing Chen

Online defect detection system is a necessary technical measure and important means for large-scale industrial printing production. It is effective to reduce artificial detection fatigue and improve the accuracy and stability of industry printing line. However, the existing defect detection algorithms are mainly developed based on high-quality database and it is difficult to detect the defects on low-quality printing images. In this paper, we propose a new multi-edge feature fusion algorithm which is effective in solving this problem. Firstly, according to the characteristics of sheet-fed printing system, a new printing image database is established; compared with the existing databases, it has larger translation, deformation, and uneven illumination variation. These interferences make defect detection become more challenging. Then, SIFT feature is employed to register the database. In order to reduce the number of false detections which are caused by the position, deformation, and brightness deviation between the detected image and reference image, multi-edge feature fusion algorithm is proposed to overcome the effects of these disturbances. Lastly, the experimental results of mAP (92.65%) and recall (96.29%) verify the effectiveness of the proposed method which can effectively detect defects in low-quality printing database. The proposed research results can improve the adaptability of visual inspection system on a variety of different printing platforms. It is better to control the printing process and further reduce the number of operators.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1731
Author(s):  
Honggui Deng ◽  
Yu Cheng ◽  
Yuxin Feng ◽  
Junjiang Xiang

Aiming at the problem of the poor robustness of existing methods to deal with diverse industrial weld image data, we collected a series of asymmetric laser weld images in the largest laser equipment workshop in Asia, and studied these data based on an industrial image processing algorithm and deep learning algorithm. The median filter was used to remove the noises in weld images. The image enhancement technique was adopted to increase the image contrast in different areas. The deep convolutional neural network (CNN) was employed for feature extraction; the activation function and the adaptive pooling approach were improved. Transfer Learning (TL) was introduced for defect detection and image classification on the dataset. Finally, a deep learning-based model was constructed for weld defect detection and image recognition. Specific instance datasets verified the model’s performance. The results demonstrate that this model can accurately identify weld defects and eliminate the complexity of manually extracting features, reaching a recognition accuracy of 98.75%. Hence, the reliability and automation of detection and recognition are improved significantly. The research results can provide a theoretical and practical reference for the defect detection of sheet metal laser welding and the development of the industrial laser manufacturing industry.


Author(s):  
Xie Changgui ◽  
Xu Hao ◽  
Liu Yuxi ◽  
Chen Ping

A new method for image-defect recognition is proposed that is based on a convolution network with repeated stacking of small convolution kernels and a maximum pooling layer. By improving the speed and accuracy of image-defect recognition, this new method can be applied to image recognition such as heavy-rail images with high noise and many types of defects. The experimental results showed that the new algorithm effectively improved the accuracy of heavy-rail image-defect recognition. As evidenced by the simulation study, the proposed method has a lower error rate in heavy-rail image recognition than traditional algorithms, and the method may also be applied to defect recognition of nonlinear images under strong noise conditions. Its robustness and nonlinear processing ability are impressive, and the method is featured with high theoretical depth and important application value.


Author(s):  
Shirong Zhang ◽  
Lian Wu

The defect detection of 3D image of nano CT under different interference has the phenomenon of prominent dislocation. Therefore, an adaptive detection method of 3D image defect of nano CT based on wavelet decomposition is proposed. Analyze the noise of three-dimensional image of nano CT, determine the mixed filtering of image sequence according to the different noise properties, evaluate the mixed filtering of image sequence, complete the preprocessing of three-dimensional image of nano CT, fuse the three-dimensional image of nano CT decomposed by wavelet after preprocessing, enhance the image after decomposition, and realize the defect adaptive detection through the characteristics of wavelet decomposition. The experimental results show that the design method can effectively detect the interference and solve the problems of traditional methods.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5612
Author(s):  
Benwu Wang ◽  
Feng Huang

Aiming at the abnormality detection of industrial insert molding processes, a lightweight but effective deep network is developed based on X-ray images in this study. The captured digital radiography (DR) images are firstly fast guide filtered, and then a multi-task detection dataset is constructed using an overlap slice in order to improve the detection of tiny targets. The proposed network is extended from the one-stage target detection method of yolov5 to be applicable to DR defect detection. We adopt the embedded Ghost module to replace the standard convolution to further lighten the model for industrial implementation, and use the transformer module for spatial multi-headed attentional feature extraction to perform improvement on the network for the DR image defect detection. The performance of the proposed method is evaluated by consistent experiments with peer networks, including the classical two-stage method and the newest yolo series. Our method achieves a mAP of 93.6%, which exceeds the second best by 3%, with robustness sufficient to cope with luminance variations and blurred noise, and is more lightweight. We further conducted ablation experiments based on the proposed method to validate the 32% model size reduction owing to the Ghost module and the detection performance enhancing effect of other key modules. Finally, the usability of the proposed method is discussed, including an analysis of the common causes of the missed shots and suggestions for modification. Our proposed method contributes a good reference solution for the inspection of the insert molding process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yifeng Zhang ◽  
Zhiwen Wang ◽  
Yuhang Wang ◽  
Canlong Zhang ◽  
Biao Zhao

The silicon panel is the core component of photovoltaic power generation, whose surface quality is related to its service life and power generation efficiency. However, microcracks, fragments, incomplete welding, broken grids, and other defects often occur in industrial production. The edge detection algorithm is usually used to detect defects in silicon panels, but the common edge detection algorithm has an impact on defect detection because of the grid shadow of the panel. The current mainstream defect detection algorithm based on convolutional neural network requires a large number of positive and negative samples of image data sets for pretraining the model, which consumes a lot of time and GPU computing power, and the steps are cumbersome. To solve the problem, a defect detection method based on Prewitt and Canny operators is proposed in this article. In this method, Prewitt and Canny operators are combined to eliminate the effect of grids on the detection. The microcrack defects and their specific positions can be detected efficiently and intuitively, therefore improving the detection accuracy. The experimental results indicate that the purity and integrity of the defect profile of the image processed by the algorithm are greatly improved. The foreground edge is clear, and the defect recognition accuracy is higher, which effectively prevent the impact of grid shadow on weld testing.


Author(s):  
Hao Li

The local data of ancient murals is seriously damaged, and image noise exists in the process of restoration, which affects the quality of restoration of ancient murals. Therefore, this paper studies the restoration method of ancient mural image defect information based on neighborhood filtering. On the premise of obtaining the causes of ancient mural defects, this method enhances image data based on spatial domain enhancement method, extracts pixel similar information based on neighborhood filtering, searches in the whole image, and removes image noise used to repair local areas; By extracting the line drawing features of mural, the defect part of ancient mural image can be repaired. The experimental results show that the peak signal-to-noise ratio of the repaired image is the highest and the quality of the image is better under the application of the repair method.


Sign in / Sign up

Export Citation Format

Share Document