scholarly journals An Intelligent Fuzzy Logic-Based Content and Channel Aware Downlink Scheduler for Scalable Video over OFDMA Wireless Systems

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1071
Author(s):  
Peter E. Omiyi ◽  
Moustafa M. Nasralla ◽  
Ikram Ur Rehman ◽  
Nabeel Khan ◽  
Maria G. Martini

The recent advancements of wireless technology and applications make downlink scheduling and resource allocations an important research topic. In this paper, we consider the problem of downlink scheduling for multi-user scalable video streaming over orthogonal frequency division multiple access (OFDMA) channels. The video streams are precoded using a scalable video coding (SVC) scheme. We propose a fuzzy logic-based scheduling algorithm, which prioritises the transmission to different users by considering video content, and channel conditions. Furthermore, a novel analytical model and a new performance metric have been developed for the performance analysis of the proposed scheduling algorithm. The obtained results show that the proposed algorithm outperforms the content-blind/channel aware scheduling algorithms with a gain of as much as 19% in terms of the number of supported users. The proposed algorithm allows for a fairer allocation of resources among users across the entire sector coverage, allowing for the enhancement of video quality at edges of the cell while minimising the degradation of users closer to the base station.

Author(s):  
Francisco de Asís López-Fuentes

P2P video streaming combining SVC and MDC In this paper we propose and evaluate a combined SVC-MDC (Scalable Video Coding & Multiple Description Video Coding) video coding scheme for Peer-to-Peer (P2P) video multicast. The proposed scheme is based on a full cooperation established between the peer sites, which contribute their upload capacity during video distribution. The source site splits the video content into many small blocks and assigns each block to a single peer for redistribution. Our solution is implemented in a fully meshed P2P network in which peers are connected to each other via UDP (User Datagram Protocol) links. The video content is encoded by using the Scalable Video Coding (SVC) method. We present a flow control mechanism that allows us to optimize dynamically the overall throughput and to automatically adjust video quality for each peer. Thus, peers with different upload capacity receive different video quality. We also combine the SVC method with Multiple Description Coding (MDC) to alleviate the packet loss problem. We implemented and tested this approach in the PlanetLab infrastructure. The obtained results show that our solution achieves good performance and remarkable video quality in the presence of packet loss.


2008 ◽  
Vol E91-B (5) ◽  
pp. 1269-1278 ◽  
Author(s):  
C. S. KIM ◽  
S. H. JIN ◽  
D. J. SEO ◽  
Y. M. RO

Long Term Evolution- Advanced (LTE-A) networks have been introduced in Third Generation Partnership Project (3GPP) release – 10 specifications, with an objective of obtaining a high data rate for the cell edge users, higher spectral efficiency and high Quality of service for multimedia services at the cell edge/Indoor areas. A Heterogeneous network (HetNet) in a LTE-A is a network consisting of high power macro-nodes and low power micro-nodes of different cell coverage capabilities. Due to this, non-desired signals acting as interference exist between the micro and macro nodes and their users. Interference is broadly classified as cross-tier and co-tier interference. The cross tier interference can be reduced by controlling the base station transmit power while the co-tier interference can be reduced by proper resource allocation among the users. Scheduling is the process of optimal allocation of resources to the users. For proper resource allocation, scheduling is done at the Main Base station (enodeB). Some LTE-A downlink scheduling algorithms are based on transmission channel quality feedback given by user equipment in uplink transmission. Various scheduling algorithms are being developed and evaluated using a network simulator. This paper presents the performance evaluation of the Adaptive Hybrid LTE-A Downlink scheduling algorithm. The evaluation is done in terms of parameters like user’s throughput (Peak, Average, and Edge), Average User’s spectral efficiency and Fairness Index. The evaluated results of the proposed algorithm is compared with the existing downlink scheduling algorithms such as Round Robin, Proportional Fair, Best Channel Quality Indicator (CQI) using a network simulator. The comparison results show the effectiveness of the proposed adaptive Hybrid Algorithm in improving the cell Edge user’s throughput as well the Fairness Index.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dongyul Lee ◽  
Chaewoo Lee

The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.


2011 ◽  
Vol 58-60 ◽  
pp. 1554-1559
Author(s):  
Chou Chen Wang ◽  
Wei Han Chen ◽  
Yan Lin Lu ◽  
Jia Wei Wu

In this paper, we develop a novel robust scheme of two-dimensional unequal error protection (2-D UEP) for the H.264 scalable video coding (SVC) with a combined temporal and quality (SNR) scalability over packet-erasure channel. To avoid the waste of bits and obtain the best rate allocation, we propose a threshold-based UEP (TH-UEP) scheme. The proposed TH-UEP designs a predefined threshold according to the length of packet and the error correcting ability of RS code to achieve the best allocation. In addition, the proposed scheme also derives a simple mathematical model to reduce computational load of the best allocation. Experimental results demonstrate that the proposed H.264 video transmission scheme can provide strong robustness and video quality improvement when compared to other 2-D UEP schemes.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Youssef Lahbabi ◽  
El Hassan Ibn Elhaj ◽  
Ahmed Hammouch

In this paper, we propose a new Scalable Video Coding (SVC) quality-adaptive peer-to-peer television (P2PTV) system executed at the peers and at the network. The quality adaptation mechanisms are developed as follows: on one hand, the Layer Level Initialization (LLI) is used for adapting the video quality with the static resources at the peers in order to avoid long startup times. On the other hand, the Layer Level Adjustment (LLA) is invoked periodically to adjust the SVC layer to the fluctuation of the network conditions with the aim of predicting the possible stalls before their occurrence. Our results demonstrate that our mechanisms allow quickly adapting the video quality to various system changes while providing best Quality of Experience (QoE) that matches current resources of the peer devices and instantaneous throughput available at the network state.


Sign in / Sign up

Export Citation Format

Share Document