scholarly journals Exhaustive Appraisal of Adaptive Hybrid LTE-A Downlink Scheduling Algorithm

Long Term Evolution- Advanced (LTE-A) networks have been introduced in Third Generation Partnership Project (3GPP) release – 10 specifications, with an objective of obtaining a high data rate for the cell edge users, higher spectral efficiency and high Quality of service for multimedia services at the cell edge/Indoor areas. A Heterogeneous network (HetNet) in a LTE-A is a network consisting of high power macro-nodes and low power micro-nodes of different cell coverage capabilities. Due to this, non-desired signals acting as interference exist between the micro and macro nodes and their users. Interference is broadly classified as cross-tier and co-tier interference. The cross tier interference can be reduced by controlling the base station transmit power while the co-tier interference can be reduced by proper resource allocation among the users. Scheduling is the process of optimal allocation of resources to the users. For proper resource allocation, scheduling is done at the Main Base station (enodeB). Some LTE-A downlink scheduling algorithms are based on transmission channel quality feedback given by user equipment in uplink transmission. Various scheduling algorithms are being developed and evaluated using a network simulator. This paper presents the performance evaluation of the Adaptive Hybrid LTE-A Downlink scheduling algorithm. The evaluation is done in terms of parameters like user’s throughput (Peak, Average, and Edge), Average User’s spectral efficiency and Fairness Index. The evaluated results of the proposed algorithm is compared with the existing downlink scheduling algorithms such as Round Robin, Proportional Fair, Best Channel Quality Indicator (CQI) using a network simulator. The comparison results show the effectiveness of the proposed adaptive Hybrid Algorithm in improving the cell Edge user’s throughput as well the Fairness Index.

Author(s):  
Shafinaz Bt Ismail ◽  
Darmawaty Bt Mohd Ali ◽  
Norsuzila Ya’acob

Scheduling is referring to the process of allocating resources to User Equipment based on scheduling algorithms that is located at the LTE base station. Various algorithms have been proposed as the execution of scheduling algorithm, which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of three well-known uplink schedulers namely, Maximum Throughput (MT), First Maximum Expansion (FME), and Round Robin (RR). The evaluation is considered for a single cell with interference for three flows such as Best effort, Video and VoIP in a pedestrian environment using the LTE-SIM network simulator. The performance evaluation is conducted in terms of system throughput, fairness index, delay and packet loss ratio (PLR). The simulations results show that RR algorithm always reaches the lowest PLR, delivering highest throughput for video and VoIP flows among all those strategies. Thus, RR is the most suitable scheduling algorithm for VoIP and video flows while MT and FME is appropriate for BE flows in LTE networks.


Author(s):  
Johann Max Hofmann Magalhães ◽  
Saulo Henrique da Mata ◽  
Paulo Roberto Guardieiro

The design of a scheduling algorithm for LTE networks is a complex task, and it has proven to be one of the main challenges for LTE systems. There are many issues to be addressed in order to obtain a high spectral efficiency and to meet the application's QoS requirements. In this context, this chapter presents a study of the resource allocation process in LTE networks. This study starts with an overview of the main concepts involved in the LTE resource allocation, and brings two new proposals of scheduling algorithms for downlink and uplink, respectively. Simulations are used to compare the performance of these proposals with other scheduler proposals widely known and explored in the literature.


2021 ◽  
Vol 7 ◽  
pp. e546
Author(s):  
Khuram Ashfaq ◽  
Ghazanfar Ali Safdar ◽  
Masood Ur-Rehman

Background Wireless links are fast becoming the key communication mode. However, as compared to the wired link, their characteristics make the traffic prone to time- and location-dependent signal attenuation, noise, fading, and interference that result in time varying channel capacities and link error rate. Scheduling algorithms play an important role in wireless links to guarantee quality of service (QoS) parameters such as throughput, delay, jitter, fairness and packet loss rate. The scheduler has vital importance in current as well as future cellular communications since it assigns resource block (RB) to different users for transmission. Scheduling algorithm makes a decision based on the information of link state, number of sessions, reserved rates and status of the session queues. The information required by a scheduler implemented in the base station can easily be collected from the downlink transmission. Methods This paper reflects on the importance of schedulers for future wireless communications taking LTE-A networks as a case study. It compares the performance of four well-known scheduling algorithms including round robin (RR), best channel quality indicator (BCQI), proportional fair (PF), and fractional frequency reuse (FFR). The performance of these four algorithms is evaluated in terms of throughput, fairness index, spectral efficiency and overall effectiveness. System level simulations have been performed using a MATLAB based LTE-A Vienna downlink simulator. Results The results show that the FFR scheduler is the best performer among the four tested algorithms. It also exhibits flexibility and adaptability for radio resource assignment.


2020 ◽  
Vol 13 (3) ◽  
pp. 326-335
Author(s):  
Punit Gupta ◽  
Ujjwal Goyal ◽  
Vaishali Verma

Background: Cloud Computing is a growing industry for secure and low cost pay per use resources. Efficient resource allocation is the challenging issue in cloud computing environment. Many task scheduling algorithms used to improve the performance of system. It includes ant colony, genetic algorithm & Round Robin improve the performance but these are not cost efficient at the same time. Objective: In early proven task scheduling algorithms network cost are not included but in this proposed ACO network overhead or cost is taken into consideration which thus improves the efficiency of the algorithm as compared to the previous algorithm. Proposed algorithm aims to improve in term of cost and execution time and reduces network cost. Methods: The proposed task scheduling algorithm in cloud uses ACO with network cost and execution cost as a fitness function. This work tries to improve the existing ACO that will give improved result in terms of performance and execution cost for cloud architecture. Our study includes a comparison between various other algorithms with our proposed ACO model. Results: Performance is measured using an optimization criteria tasks completion time and resource operational cost in the duration of execution. The network cost and user requests measures the performance of the proposed model. Conclusion: The simulation shows that the proposed cost and time aware technique outperforms using performance measurement parameters (average finish time, resource cost, network cost).


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1071
Author(s):  
Peter E. Omiyi ◽  
Moustafa M. Nasralla ◽  
Ikram Ur Rehman ◽  
Nabeel Khan ◽  
Maria G. Martini

The recent advancements of wireless technology and applications make downlink scheduling and resource allocations an important research topic. In this paper, we consider the problem of downlink scheduling for multi-user scalable video streaming over orthogonal frequency division multiple access (OFDMA) channels. The video streams are precoded using a scalable video coding (SVC) scheme. We propose a fuzzy logic-based scheduling algorithm, which prioritises the transmission to different users by considering video content, and channel conditions. Furthermore, a novel analytical model and a new performance metric have been developed for the performance analysis of the proposed scheduling algorithm. The obtained results show that the proposed algorithm outperforms the content-blind/channel aware scheduling algorithms with a gain of as much as 19% in terms of the number of supported users. The proposed algorithm allows for a fairer allocation of resources among users across the entire sector coverage, allowing for the enhancement of video quality at edges of the cell while minimising the degradation of users closer to the base station.


Guaranteeing Quality of Service (QoS) to mobile users is the primary aim of cellular broadband system like Long Term Evolution (LTE). Radio resource allocation and scheduling are two important functions in the LTE networks to enhance the quality of service. For increasing the generally user experience, an efficient radio resource allocation and Scheduling algorithm should be used. However, this became a non-trivial task as the demands and requirements of user data changes day-to-day. In these situations, with the limited radio resources, maximum system capacity can be obtained on expense of unfair share of the resources. In this work, high speed cell edge users are considered as they experience poor signal strength and their quality of service degrades when they move away from Evolved-Nodes (e-Nodes). Here, a novel scheduling algorithm has been introduced to extend the cell edge throughput amid during high mobility scenarios. The proposed scheduling scheme will be compared with the conventional schemes like best CQI, RR and PF in terms of throughput and fairness. It is presented that the proposed scheme gives better performance against the conventional ones in the chosen scenario.


Author(s):  
Ravi Gatti ◽  
Shiva Shankar

Aim: The 5G LTE-Advanced (LTE-A) intended to provide increased peak data rates for the mobile users with the use of Carrier Aggregation (CA) technology. Due to need of un-interrupted bi-directional communication between the eNodeB and User Equipment (UE) in LTE-A, Joint Scheduling Algorithm is considered as central research topic. Objective: A modified joint Uplink/ Downlink (UL/DL) Scheduling algorithm to meet on demands service request from the UEs is proposed in this paper. Methods: CA is used for calculate the weight factors for the bandwidth allocation among the mobile users based on the QoS Class Identifier (QCI). However due the huge amount of data flow in the indoor coverage yield introduction of the small cell called femtocells. Femtocells are randomly deployed in macro cell area in order to improve indoor coverage as well capacity enhancement. Result: Mixed types of traffic are considered ranging from real time to non real time flows and quality of service is evaluated in term of throughput, packet loss ratio, fairness index and spectral efficiency. The proposed modified joint user scheduling algorithm results better in delay among the end users due the reduction in the traffic load of the macro cell base station. Conclusion: Simulation results shows that, the proposed methodology suits best for the small scale network architecture with increased spectral efficiency and throughput among the UEs.


2015 ◽  
Vol 61 (4) ◽  
pp. 409-414 ◽  
Author(s):  
Mohammed Mahfoudi ◽  
Moulhime El Bekkali ◽  
Abdellah Najd ◽  
M. El Ghazi ◽  
Said Mazer

Abstract The Third Generation Partnership Project (3GPP) has developed a new cellular standard based packet switching allowing high data rate, 100 Mbps in Downlink and 50 Mbps in Uplink, and having the flexibility to be used in different bandwidths ranging from 1.4 MHz up to 20 MHz, this standard is termed LTE (Long Term Evolution). Radio Resource Management (RRM) procedure is one of the key design roles for improving LTE system performance, Packet scheduling is one of the RRM mechanisms and it is responsible for radio resources allocation, However, Scheduling algorithms are not defined in 3GPP specifications. Therefore, it gets a track interests for researchers. In this paper we proposed a new LTE scheduling algorithm and we compared its performances with other well known algorithms such as Proportional Fairness (PF), Modified Largest Weighted Delay First (MLWDF), and Exponential Proportional Fairness (EXPPF) in downlink direction. The simulation results shows that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. This paper also discusses the key issues of scheduling algorithms to be considered in future traffic requirements.


Sign in / Sign up

Export Citation Format

Share Document