scholarly journals Analytical Calculation of Armature Reaction Field of the Interior Permanent Magnet Motor

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2375 ◽  
Author(s):  
Fangwu Ma ◽  
Hongbin Yin ◽  
Lulu Wei ◽  
Liang Wu ◽  
Cansong Gu

The energy crisis and environmental concerns worldwide have helped usher in the age of electric vehicles (EVs) and hybrid EVs (HEVs). The interior permanent magnet motors (IPMMs) are widely used in these vehicles. The analysis of the armature reaction field is the most critical issue in the study of IPMMs since it determines the characters of torque, efficiency, vibration, and the radiated acoustic noise. This paper provides a calculation method of the armature reaction magnetic field (ARMF) of an IPMM. First, the formulas of ARMF without magnetic barrier are derived. Second, the relative permeance function of an IPMM is calculated. Third, the analytical solution of the ARMF of an IPMM is derived by applying the armature reaction magnetic field with unsaturated rotor multiplied by relative permeance function. Finally, several results of comparisons between the calculation method proposed in this paper and the finite element method are presented. Based on the calculation method proposed in this paper, the magnetic barrier’s influence on the ARMF is studied. The spatial harmonic orders and time harmonic orders of the ARMF of IPMM are revealed respectively.

2013 ◽  
Vol 416-417 ◽  
pp. 58-65 ◽  
Author(s):  
Chen Li ◽  
Hang Zhang ◽  
Li Bing Jing ◽  
Yue Jin Zhang ◽  
Jie Bao Li

An exact analytical model of Halbach arrays permanent-magnet (PM) motor is established for the calculation of air-gap magnetic field on load in this paper. The exact analytical method is based on the resolution of Laplaces or Poissons equations by applying the boundary conditions on the interface between each sub-domain: air-gap, Halbach arrays and slots. The waveforms of no-load magnetic field flux density, back electromotive force (EMF), armature reaction field flux density, air-gap magnetic field flux density on load and electromagnetic torque, which computed by the analytical method were validated through the finite-element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document