scholarly journals Modelling of a Variable Refrigerant Flow System in EnergyPlus for Building Energy Simulation in an Open Building Information Modelling Environment

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 22 ◽  
Author(s):  
Bárbara Torregrosa-Jaime ◽  
Pedro J. Martínez ◽  
Benjamín González ◽  
Gaspar Payá-Ballester

Variable refrigerant flow (VRF) systems are one possible tool to meet the objective that all new buildings must be nearly zero-energy buildings by 31 December 2020. Building Information Modelling (BIM) is a methodology that centralizes building construction project information in a digital model promoting collaboration between all its agents. The objectives of this work were to develop a more precise model of the VRF system than the one available in EnergyPlus version 8.9 (US Department of Energy) and to study the operation of this system in an office building under different climates by implementing the building energy simulation in an Open BIM workflow. The percentage deviation between the estimation of the VRF energy consumption with the standard and the new model was 6.91% and 1.59% for cooling and heating respectively in the case of Barcelona and 3.27% and 0.97% respectively in the case of Madrid. The energy performance class of the analysed building was A for each climatic zone. The primary energy consumption of the office building equipped with the VRF system was of 65.8 kWh/(m2·y) for the Mediterranean climate of Barcelona and 72.4 kWh/(m2·y) for the Continental climate of Madrid.

2018 ◽  
Vol 9 (2) ◽  
pp. 137-144 ◽  
Author(s):  
S. Chen ◽  
R. Jin ◽  
M. Alam

Building Information Modelling (BIM) has become an emerging digital technology in the architecture, engineering and construction (AEC) industry. There is a growing demand on applying BIM for sustainable design including the building energy simulation (BES). Lack of sufficient interoperability has caused barriers to utilize the information from BIM for BES. In this study, the interoperability between BIM and four different BES tools (i.e., Ecotect, EQUEST, Design Builder and IES-VE) was explored by using a case study of a residential building in the design stage. The misrepresented information from BIM to multiple BES tools were identified based on six different categories of building information parameters. The research proposed an approach of creating gbXML file with an improved integrity of information in BIM. Overall, this study would lead to further work in developing platforms for improving the information transformation from BIM to BES.


2020 ◽  
Vol 27 (8) ◽  
pp. 1679-1702
Author(s):  
Hong Xian Li ◽  
Zhiliang Ma ◽  
Hexu Liu ◽  
Jun Wang ◽  
Mohamed Al-Hussein ◽  
...  

PurposeThe operational phase of a building's lifecycle is receiving increasing attention, as it consumes an enormous amount of energy and results in tremendous detrimental impacts on the environment. While energy simulation can be applied as a tool to evaluate the energy performance of a building in operation, the emergence of Building Information Modeling (BIM) technology is expected to facilitate the evaluation process with predefined and enriched building information. However, such an approach has been confronted by the challenge of interoperability issues among the related application software, including the BIM tools and energy simulation tools, and the results of simulation have been seldom verified due to the unavailability of corresponding experimental data. This study aims to explore the interoperability between the commonly used energy simulation and BIM tools and verifies the simulation approach by undertaking a case study.Design/methodology/approachWith Autodesk Revit and EnergyPlus selected as the commonly used BIM and energy simulation tools, respectively, a valid technical framework of transferring building information between two tools is proposed, and the interoperability issues that occur during the data transfer are studied. The proposed framework is then employed to simulate the energy consumption of a single-family house, and sensitivity analysis and analysis on such parameters as schedule are conducted for building operations to showcase its applicability.FindingsThe simulation results are compared with monitored data and the results from another simulation tool, HOT2000; the comparison reveals that EnergyPlus and HOT2000 predict the total energy consumption with a difference from the monitoring data of 8.0 and 7.1%, respectively.Practical implicationsThis research shows how to efficiently use BIM to support building energy simulation. Relevant stakeholders can learn from this research to avoid data loss during BIM model transformation.Originality/valueThis research explores the application of BIM for building energy simulation, compares the simulation results among different tools and validates simulation results using monitored data.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8487
Author(s):  
Serdar Durdyev ◽  
Gholamreza Dehdasht ◽  
Saeed Reza Mohandes ◽  
David J. Edwards

In recent years, many researchers across the world have addressed the implementation of Building Information Modelling (BIM) in the energy assessment of the built environment. However, several potential issues still need to be resolved in order to utilise the benefits provided by BIM to a maximum degree. To fill this gap, a systematic literature review is conducted in this study to critically investigate the utilisation of BIM tools in energy assessment. To achieve the above-mentioned objective, after shortlisting the relevant papers published hitherto, using keyword searching, a systematic review was undertaken, including the application of BIM in the contexts of different countries, types of BIM tools, BIM and Life Cycle Assessment (LCA) integration, energy affiliations, stakeholders’ involvement and their roles, uncertainty, and sensitivity analysis. The outcomes show the most widely used and effective BIM tools in different types of construction projects in various countries. The review of the literature clearly shows that BIM tools can effectively be used in the assessment of energy performance of buildings. The article gives insight to engineers, architecture, and decision makers to carefully select appropriate BIM tools in terms of energy assessment.


2012 ◽  
Vol 193-194 ◽  
pp. 258-269 ◽  
Author(s):  
Ching Hin Law ◽  
Jian Kun Yang ◽  
Xiang Yang Jiang

This research introduced and implemented building energy simulation via a case study of a commercial project in China, by considering the green features which can reduce the annual energy consumption of this building. This simulation process was based on the requirement described within LEED EA c1 Optimize Energy Performance. The result concluded that more than 39.41% of energy cost was reduced and thus the project can obtain 16 points from this credit.


2011 ◽  
Vol 121-126 ◽  
pp. 2860-2867 ◽  
Author(s):  
Xiao Shan Yang ◽  
Li Hua Zhao ◽  
Michael Bruse ◽  
Qing Lin Meng

To provide a more accurate prediction of building energy consumption, it is necessary to take into account the influence of the microclimate around a building establishing through the interaction with other buildings or the natural environment. This paper presents a method for the quantitative assessment of building performance under any given urban context by linking the urban microclimate model ENVI-met to the building energy simulation (BES) program EnergyPlus. The full microclimatic factors such as solar radiation, thermal radiation, outdoor air temperature, humidity, and wind speed have been considered in the proposed scheme. The method outlined in this paper could be useful for urban and building optimal design.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Sign in / Sign up

Export Citation Format

Share Document